+48 32 2317319 w.201


Obrazowanie hiperspektralne, przetwarzanie obrazów, uczenie maszynowe

Horizontal Tabs





4. Książek, K., M. Romaszewski, P. Głomb, B. Grabowski, and M. Cholewa, "Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks", Sensors, vol. 20, issue Recent Advances in Multi- and Hyperspectral Image Analysis, 11/2020.
8. Głomb, P., and M. Romaszewski, "Anomaly detection in hyperspectral remote sensing images", Hyperspectral Remote Sensing: Theory & Applications: Elsevier, 2020.


9. Cholewa, M., P. Głomb, and M. Romaszewski, "A Spatial-Spectral Disagreement-Based Sample Selection With an Application to Hyperspectral Data Classification", IEEE Geoscience and Remote Sensing Letters, vol. 16, pp. 467-471, March, 2019.
10. Głomb, P., K. Domino, M. Romaszewski, and M. Cholewa, "Band selection with Higher Order Multivariate Cumulants for small target detection in hyperspectral images", PP-RAI'2019, Wrocław, Poland, Wroclaw University of Science and Technology, pp. p. 121, 2019.
11. Grabowski, B., P. Głomb, M. Romaszewski, and M. Ostaszewski, "Unsupervised deep learning approach to hyperspectral anomaly detection", PP-RAI'2019, Wrocław, Poland, Wroclaw University of Science and Technology, 2019.


13. Romaszewski, M., P. Głomb, and M. Cholewa, "Adaptive, Hubness-Aware Nearest Neighbour Classifier with Application to Hyperspectral Data", Computer and Information Sciences: Springer International Publishing, 2018.
14. Romaszewski, M., A. Sochan, and K. Skabek, "Matrix and Tensor-Based Approximation of 3D Face Animations from Low-Cost Range Sensors", Computer and Information Sciences, Cham, Springer International Publishing, 2018.


15. Romaszewski, M., and P. Głomb, "Parameter Estimation for HOSVD-based Approximation of Temporally Coherent Mesh Sequences", Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2016.
16. Romaszewski, M., P. Głomb, and M. Cholewa, "Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 121, pp. 60 - 76, 2016.


17. Romaszewski, M., P. Głomb, and P. Gawron, "Natural hand gestures for human identification in a Human-Computer Interface", Image Processing Theory Tools and Applications (IPTA), 2014 4th International Conference on: IEEE, pp. 404–409, 10, 2014.
18. Romaszewski, M., P. Gawron, and S. Opozda, "Dimensionality reduction of dynamic animations using HO-SVD", Lecture Notes in Artificial Intelligence, vol. 8467, pp. 757–768, 2014.


19. Romaszewski, M., P. Gawron, and S. Opozda, "Dimensionality Reduction of Dynamic Mesh Animations Using HO-SVD", Journal of Artificial Intelligence and Soft Computing Research, vol. 3, no. 4, pp. 277–289, 2013.
20. Cholewa, M., P. Głomb, S. Opozda, M. Romaszewski, A. Sochan, M. Kosiedowski, E. Kuśmierek, A. Bęben, P. Krawiec, and A. Stroiński, "Aplikacje Sieci Świadomej Treści", Inżynieria Internetu przyszłości część 2: Oficyna Wydawnicza PW, 2013.


22. Głomb, P., M. Romaszewski, S. Opozda, and A. Sochan, "Choosing and Modeling the Hand Gesture Database for a Natural User Interface", Gesture and Sign Language in Human-Computer Interaction and Embodied Communication, Lecture Notes in Artificial Intelligence: Springer Berlin Heidelberg, 2012.


24. Romaszewski, M., and P. Głomb, "The Effect of Multiple Training Sequences on HMM Classification of Motion Capture Gesture Data", Computer Recognition Systems, vol. 4: Springer, pp. 365–373, 2011.
25. Sochan, A., P. Głomb, K. Skabek, M. Romaszewski, and S. Opozda, "Virtual Museum as an Example of 3D Content Distribution in the Architecture of a Future Internet", Computer Networks 2011. Communications in Computer and Information Science 160., pp. 459–464, 2011.