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Abstract—The main purpose of this paper is to study  

controllability of linear continuous-time fractional dynamical 

systems containing both lumped constant delay in state variables 

and distributed delays in admissible controls. Necessary and 

sufficient conditions for relative controllability in finite time 

interval are formulated and proved using theory of linear bounded 

operators, solution properties of fractional differential equations 

and results taken directly from linear matrix algebra. The main 

result of the paper is to show, that global relative controllability of 

fractional linear systems with different types of delays is 

equivalent to non-singularity of suitably defined relative 

controllability matrix.  
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I.  INTRODUCTION 

Controllability similarly as observability and stability is one 

of the fundamental concept in mathematical control theory and 

plays an important role both in traditional and fractional control 

theory. During recent years controllability of time delay control 

systems has been considered in many monographs and papers. 

This has been motivated, on the one hand by the wide range of 

possible applications in various area of science and engineering 

and, on the other hand, by the interesting and difficult 

theoretical problems posed by such systems.  

 

In the theory of dynamical systems we may consider delays 

both in the state variables or/and in the admissible controls. 

Moreover, we have generally many kinds of delays, i.e., 

distributed delays, multiple point delays both constant or time-

varying. It is important to note, that in dynamical systems with 

delays it is necessary to consider two types of states, namely: 

instantaneous states and complete states. 

 

Controllability of linear systems with different types of 

delays was considered in many monographs [11], [13], [18], 

[21],  survey papers [19] and [20] and in regular papers [9], 

[10], [11], [12], [16], [17].  

 

The main purpose of this paper is to study the relative 

controllability of linear infinite delay dynamical systems 

containing both multiple lumped time varying delays and 

distributed delays in the state variables and multiple lumped 

time varying delays in the in admissible controls.  

  

Controllability is a qualitative property of dynamical control 

systems and is of particular importance in different, mainly 

theoretical problems in control theory. Systematic study of 

controllability was started at the beginning of sixties, when the 

theory of controllability based on the description in the form of 

state space for both time-invariant and time-varying linear 

control systems was worked out [18]. Roughly speaking, 

controllability generally means, that it is possible to steer 

dynamical control system from an arbitrary initial state to an 

arbitrary final state using the set of admissible controls.  

 

In the literature there are many different definitions of 

controllability, both for linear and nonlinear or semilinear 

dynamical systems [4], [5], [25], [29]. Controllability concept 

strongly depends on class of dynamical control systems and on 

the set of admissible controls, [10], [11], [12], [13], [33]. 

Therefore, nonlinear or semilinear fractional systems there exist 

many different necessary and sufficient conditions for global 

and local controllability [4], [5], [24]. Using theory of 

difference equations and pure algebraic methods controllability 

of different discrete time linear fractional control systems was 

discussed in [10], [11], [17]. 

 

The control processes frequently involve different types of 

delays in state variables  or in admissible controls [15]. It should 

be pointed out, that delay is one of the general phenomenon in 

real dynamical system, which has a crucial effect on the system 

properties, as for example on the controllability, observability 

and stability. 

 

For dynamical systems with delays in control and/or state 

variables two fundamental concepts of states are considered, 

namely: finite-dimensional instantaneous or relative state and 

infinite-dimensional complete or functional state [18], [21]. 

However, it should be stressed, that relative state does not give 

full information about trajectory of control system. Hence, it is 

necessary to introduce at least two different concepts of 

controllability, namely: relative controllability connected with 

relative states, and complete controllability connected with 

complete states.  
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On the other hand, fractional order continuous and discrete 

mathematical models express the behavior of many real process 

more precisely than integer order ones.  

 

The various types of fractional differential equations have many 

applications in different fields of technique including for 

example signal processing, theory of visco-elastic materials [1], 

[30], supercapacitors [23] filter description and design, circuit 

theory [13], computer networks, and bioengineering [11].  

 

Recently different controllability problems have been discussed 

both for linear or nonlinear fractional infinite dimensional 

control systems defined in Hilbert spaces. Stochastic boundary 

controllability of nonlinear fractional systems defined in 

infinite dimensional Hilbert space was considered in paper [27] 

using methods of stochastic differential equations. 

Approximation results for linear fractional diffusion wave 

equation were presented and discussed in paper [22]. Moreover, 

existence and properties of solution and initial Cauchy problem 

for abstract  infinite dimensional linear differential fractional 

equation are formulated and discussed in paper [32]. 

 

In the present paper we shall study global relative 

controllability in a given finite time interval for fractional, 

linear, continuous time dynamical systems with multiple time 

variable point delays and distributed delay in admissible 

control.  

 

This is natural generalizations of controllability concepts, 

which is rather well known in the theory of finite dimensional 

linear control systems [11], without delays in state variables or 

admissible control. Using techniques similar to those presented 

in monographs [18], and [21] and in the series of papers [10], 

[12], [16] and [17] we shall formulate and prove necessary and 

sufficient conditions for global relative controllability of 

fractional  control systems in a prescribed time interval.  

  

This paper is organized as follows: section 2 contains 

mathematical model of linear, stationary fractional stationary 

dynamical system with multiple time variable point delays in 

admissible controls. Moreover, in this section basic solution of 

fractional linear finite dimensional differential equation is 

presented in compact integral form and its properties are also 

discussed. In section 3 definition of global relative 

controllability in a given time interval is recalled. Next, using 

results and methods taken directly from linear functional 

analysis [31], global relative controllability problem is 

mathematically stated and considered. Moreover, using suitably 

defined relative controllability matrix necessary and sufficient 

conditions for global relative controllability in a finite time 

interval are formulated and proved. admissible control. Finally, 

section 4 contains concluding remarks and proposes some open 

controllability problems for more general fractional systems. 

 

II. SYSTEM DESCRIPTION 

 

Let us consider linear, fractional, delay dynamical systems 

containing single lumped constant delay in the state variables 

and distributed delays in admissible controls, described by the 

following fractional differential state equation [2], [3], [11], 

[24], [25]. 
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10 ≤< α , )(tDα
 denotes fractional Caputo derivative, 

  A is n×n dimensional constant matrix with real coefficients, 

admissible controls )],,([ 10

2 p

ad RttLUu =∈  are 

unconstrained, 

h>0 is given delay 
nRtx ∈)(  for ],[ 00 thtt −∈ ,  

pRtu ∈)(  for ],[ 00 thtt −∈ ,  

],[),( 000
thtttxt −∈ is given continuous initial function, 

],[),( 000
thtttut −∈ is given initial admissible control 

),( τtB is n×p dimensional matrix continuous in t for fixed τ 

and of bounded variation in τ on [-h,0] for each ],[ 10 ttt ∈  and 

continuous from left in τ on the interval (-h,0). 

integral term in (1) is in the Lebesque-Stieltjes sense [6], [8], 

[9] with respect to τ, 

symbol 
τ

dB  denotes the Lebesque-Stieltjes integration [6], [8],  

with respect to the variable τ in the matrix function ).,( τtB  

initial data },{
00 tt ux  forms complete state of the fractional 

delayed system (1) at initial time t0. 

 

In order to find the solution of fractional differential equation 

(1) let us use Laplace transform L and let us introduce the 

following n×n dimensional matrices [14], 
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where symbol Γ denotes the Euler gamma function. 
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III CONTROLLABILITY CONDITIONS 

 

Since in the paper only relative controllability is considered, 

then let us recall definition of global relative controllability in a 

given finite time interval. 

 

Definition 1.  The system (1) is said to be globally relatively 

controllable over time interval ],[ 10 tt  if for each initial 

complete state },{
00 tt ux of and any final relative state 

nRx ∈1  there exists an admissible control 

)],,([ 10

2 pRttLu∈  such that the solution of equation (1) 

with initial conditions (2) satisfies final condition 11)( xtx = . 

Solution of equation (1) can be expressed  as follows 
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Now, using unsymmetric Fubini theorem (see e.g. [6] and [8] 

for more details) and changing order of integration in the last 

term we have [2], [19], [26] 
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The first two terms in formula (3) are depended only on given 

initial complete state },{
00 tt ux , and in fact do not depend on 

admissible control 0),( tttu ≥ .Therefore, in order to separate 

these terms let us denote 
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Moreover, changing variables in the integral term 
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Now, let us introduce relative controllability operator )( 1tC
α

 

and its adjoint operator )( 1tC∗

α
 

 

 
−

−
−−−=

=

1

0

1

0

1,

1

1

1

)()),()()(

)(

t

t h

t dssusBdstXst

utC

ττ
ταα

α

α

 

 (6) 

 

ysBdstXst

ytC

h

t
−

∗−

∗

−−−=

=

0

1,

1

1

1

)),()()(

)(

1
ττ

ταα

α

α

          (7)                

 

Finally, let us define n×n dimensional relative controllability 

matrix 
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Using relative controllability matrix it is possible to formulate 

and prove main result of the paper given the following theorem, 

which presents necessary and sufficient conditions for global 

relative controllability in a given time interval. 

 

Theorem 1. The following statements are equivalent  

 

(1) Fractional system (1) is globally relatively 

controllable over ],[ 10 ttt ∈ . 

(2) Relative controllability linear operator  
np RRttLC →)],,([: 10

2

α
 is onto. 

(3) Adjoint relative controllability operator 

)],,([: 10

2 mn RttLRC →
∗

α
 is invertible i.e., it is 

linear “one to one” operator. 

(4) The bounded linear operator  
nn RRCC →

∗ :
αα

 is 

onto and may be realized by nxn nonsingular matrix. 

 

Proof.  

In the proof of Theorem 1 relative controllability linear 

bounded operator 
α

C   and its adjoint operator 
∗

α
C  play the 

important role. Hence, linear functional analysis theory may be 

applied to prove theorem. More precisely, we shall use methods 

and results taken directly from theory of linear bounded 

operators in Hilbert spaces.  

 

First of all, let use, that range of the relative controllability 

operator 
α

C  is finite dimensional, then operator 
α

C  is a 

bounded linear operator.  

 

Moreover, as was mentioned before, from the definition 1 and 

integral formula (8) immediately follows that global relative 

controllability property is equivalent that relative controllability 

operator 
α

C  is surjective operator. Hence, equivalence (1) and 

(2) follows. 

 

From the theory of linear operators follows that surjectivity of  

the operator  
α

C  implies (see e.g. [8], [31])  that its adjoint 

linear operator 

   

)],,([: 10

2 mn RttLRC →
∗

α
 

 

is also linear and bounded operator and moreover it is invertible 

operator, i.e. “one to one” operator.  

 

Hence, equivalence (2) and (3) follows. 

 

Similarly, from theory of linear bounded operators follows, that 

invertibility of  the  selfadjoint operator 
∗

αα
CC  means, that 

exist inverse bounded linear operator 
1)( −∗

αα
CC and this is 

equivalent to surjectivity of the operator 
α

C . Therefore, for 

relatively controllable fractional system (1), relative 

controllability matrix  

 
nn RRCCttW →=

∗ :),( 10 αα
 

 

is invertible i.e., it is full rank matrix. Hence, equivalence (4) 

and (1) follows. 

This statement completes proof of Theorem 1. 

 

Corollary 2. Fractional system (1) with distributed delay in 

admissible control is globally relatively controllable on time 

interval ],[ 10 tt if and only if the relative controllability matrix 

is nonsingular. 

 

Proof. From global relative controllability definition directly 

follows, that for relatively controllable fractional system (1) the 

operator relative controllability operator )( 1tC
α

 is onto. On 

the other hand by Theorem 1 this is equivalent, that relative 

controllability matrix ),( 10 ttW  is nonsingular.  

For globally relatively controllable fractional system (1) it is 

possible to find an admissible control, which transforms given 

initial complete state },{
00 tt ux of and any final relative state 

nRx ∈1  at time 1t . First of all, let us observe, that since 

relative controllability matrix ),( 10 ttW  is nonsingular matrix 

so its inverse ),( 10

1 ttW −
  is well defined. Therefore, let us 

define admissible control as follows 

 

)),,,()(,()(

)(),()()(

)),()(,()()(

0

0

0

0

0

010110

1

1

0

1,

1

1

1110

1

1

0

t

h

t

t

t

tL

uxttqxttWtC

dssusBstXstdB

xtxxttWtCtu

−=

=












−−−−

−−=

−∗

− +

−

−∗

 

α

τ

αα

α

τ

α

ττ

  (9) 
 

where complete initial state and the final relative state vector 

are chosen arbitrarily.  

 

Inserting admissible control )(0 tu  given by equality (9) into 

solution formula (3) and taking into account equalities (6), (7) 

and (8) we have 

334



 

1001110

1

10

001

001110

1

11

001

0

0

1,

1

1

001010

)),,,()(,(),(

),,,(

)),,,()(,()()(

),,,(

)(),()()(

),,,(),,,,(

0

0

0

0

1

0

1

00

xuxttqxttWttW

uxttq

uxttqxttWtCtC

uxttq

dssusBdstXst

uxttquuxttx

t

t

t

t

t

t h

t

tt

=−+

+=

=−+

+=

=







−−−+

+=

−

−∗

−

−

 

αα

ταα

α
ττ

    (10)  

Thus, the admissible control )(0 tu  transfers initial complete 

state },{
00 tt ux to final relative state 

nRx ∈1  at time 1t .  

IV   CONCLUSIONS 

 

In this paper linear fractional finite-dimensional stationary 

dynamical control systems with different types of delays in 

admissible control are considered. More exactly, single constant 

delay in state variables and distributed delays in admissible 

controls are discussed. It is generally assumed, that the 

mathematical model is represented by linear ordinary fractional 

differential state equations. Using notations, theorems and 

methods taken directly from functional analysis and linear 

controllability theory, necessary and sufficient conditions for 

global relative controllability in a given finite time interval are 

formulated and proved.  

The main result of this paper is to show and to prove, that global 

relative controllability of fractional control systems with delays 

both in state variables and in admissible control is equivalent to 

non-singularity of suitably defined square relative controllability 

matrix. 

Using suitably defined relative controllability matrix for 

global relatively controllable systems steering admissible 

control is proposed, which steers the fractional system from 

given initial complete state to desired final relative state. 

Moreover, at the beginning of the paper some remarks and 

comments on the existing in literature controllability results for 

different types of linear continuous-time and discrete-time 

fractional dynamical system are also presented.  

It should be pointed out, that using different methods of 

functional analysis, controllability results presented in this paper 

may be extended in many different ways both for fractional 

systems and for standard systems [16], [17], [33] and for 

fractional systems with constrained admissible controls [9], 

[10], [11], [12], [26], [27] and [28]. First of all, using relative 

controllability matrix, relative controllability problems for 

semilinear, or generally nonlinear fractional control systems 

with different types of delays not only in admissible controls, 

but also in the state variables recently have been considered in 

papers [4], [5].  

Second possibility is to formulate and prove necessary and 

sufficient conditions for relative controllability of fractional 

control systems with different orders of derivatives, applying 

methods and concepts proposed in paper [12].  

The third direction is to consider infinite dimensional control 

systems applying functional analysis methods and concepts (see 

monographs [18], [21], and [32]). Since in this case relative state 

space is infinite dimensional space, then several additional 

concepts of controllability should be introduced, namely: 

approximate absolute controllability and exact absolute 

controllability, approximate relative controllability and exact 

relative controllability. 

In last few years nonlinear or semilinear fractional control 

systems have been discussed in the literature e. g., in papers [3], 

and [4]. However, so far, but only rather little attention reports 

on the global or local relative controllability for delayed systems 

were published. It follows from the fact, that for nonlinear or 

semilinear fractional systems we do not know the exact form of 

the solution for the nonlinear state equation.  

Relative controllability conditions for semilinear fractional 

systems with dominated linear part are discussed in the papers 

[24], and [25] under the assumption, that linear part is relatively 

controllable and the nonlinear part satisfy certain inequality.  

Generally, in the case of semilinear or nonlinear fractional 

control systems different techniques are used. The most popular 

is the fixed-point technique. For example, it is possible to use 

Banach fixed point theorem, Schauder fixed point theorem, 

Schaefer fixed point theorem or Darbou fixed point theorem 

based on measures of noncompactnes in Banach, spaces [6], [8]. 

It strongly depends on the form of nonlinear part of the fractional 

state equation. 

Minimum energy control problem for fractional systems,  

similarly as for standard linear systems is strongly connected 

with different controllability concepts, (see e.g., [16], [20], [24] 

for more details). First of all, let us observe, that for relatively 

controllable linear control system there exists generally many 

different admissible controls transferring given initial state 

complete state to the desired final relative state. Therefore, we 

may ask which, of these possible admissible controls are 

optimal one according to given a priori criterion.  

 

For quadratic criterion and relatively controllable linear 

fractional systems (1), solution of this problem can be found 

using relative controllability matrix. Moreover, minimum 

energy value may be computed in rather simple form. However, 

it should be mentioned, that this method requires many 

additional restrictive assumptions (see monographs [18] and 

[21] and survey papers [16] and [17] for more details) as for 

example, that state variables and admissible controls are 

unbounded in whole time interval.   
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