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ABSTRACT The Internet of Things (IoT) is transforming industries by enhancing productivity and
efficiency; however, energy availability remains a significant challenge due to the limited capacity of
batteries and supercapacitors powering IoT devices. The emergence of Green IoT (G-IoT) frameworks,
which prioritize energy efficiency and renewable energy integration, offers a promising solution to address
this challenge. Despite these advancements, energy storage systems (ESSs) face issues such as capacity
degradation, leakage, and charge redistribution, which can lead to energy depletion and service disruptions.
Traditional models often assume constant energy harvesting rates, overlooking the time-varying nature of
environmental conditions that influence energy availability. In this paper, we propose a novel mathematical
framework that incorporates time-dependent fluctuations in the energy harvesting rate to analyze the
dynamic interactions between energy harvesting, leakage, and consumption in green IoT systems. Our
approach includes an energy packet model to represent transient energy dynamics and a Markov model
to capture fluctuations in the energy harvesting rate. Through numerical simulations, we evaluate the impact
of key design parameters, such as ESS capacity, mean energy consumption rate, energy leakage, and energy
harvesting rate variations, on critical performance metrics including the probability of energy depletion and
the transient mean number of stored energy packets. The results highlight the importance of considering
time-varying energy harvesting in the design and optimization of IoT systems for long-term operation and
sustainability.

INDEX TERMS Time-dependent analysis, energy harvesting, energy leakage, energy-efficiency, green IoT

I. INTRODUCTION

The Internet of Things (IoT) is one of the most transformative
technologies of the 21st century, with applications spanning
various industries, including transportation, energy, construc-
tion, agriculture, home automation, smart buildings, smart
cities, environmental monitoring, healthcare, defense, manu-
facturing, and logistics [1], [2]. The deployment of hundreds
of billions of IoT devices is anticipated to drive productivity
and efficiency across multiple sectors [3], solidifying IoT’s
role as a key enabler of Industry 4.0, which is reshaping
modern industries.

Despite substantial progress in developing reliable and
sustainable IoT systems, energy availability remains a fun-
damental challenge. IoT nodes are typically powered by
batteries or supercapacitors, both of which have limited en-
ergy storage capacity [3], [4]. This limitation raises concerns
about achieving long-term, uninterrupted operation of IoT
devices, particularly those expected to function for several
years without human intervention [5]. Moreover, energy
storage systems (ESSs) are not ideal, and their inherent
imperfections further restrict their performance. Key issues
include capacity degradation over repeated charge-discharge

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3569659

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cycles, energy leakage, and charge redistribution (notably in
supercapacitors). These factors accelerate energy depletion,
increasing the likelihood of energy-related service disrup-
tions. A potential mitigation strategy is to incorporate these
non-idealities into energy storage models to assess their
impact accurately. However, this also adds complexity to the
modeling process [6].

In recent years, substantial efforts have been made to en-
hance the energy reliability and sustainability of IoT systems.
One of the key advancements in this domain is the Green
IoT (G-IoT) framework [7]–[9], which focuses on optimizing
energy efficiency, ensuring energy reliability, and integrating
renewable energy sources. As the deployment of IoT devices
scales into the tens of billions, adopting green IoT strategies
is essential for minimizing carbon emissions, reducing elec-
tronic waste, and mitigating the environmental impact of IoT
operations and disposal. A widely adopted approach in Green
IoT is the implementation of energy-saving techniques to
reduce power consumption. Several key strategies outlined in
[7]–[9] include duty cycling to reduce active power consump-
tion, packet size reduction and transceiver optimization to
minimize communication energy, energy-aware routing and
adaptive sensing for efficient data collection, protocol over-
head reduction to streamline communication, voltage and
frequency scaling to optimize hardware power usage, energy-
efficient hardware and software design, Green IoT commu-
nication technologies such as BLE, RFID, NFC, Zigbee,
LoRa, and Sigfox, sustainable IoT architectures including
green cloud computing, fog computing, and virtualization,
as well as the use of sustainable materials and efficient
energy management techniques such as energy thresholds.
A comprehensive review of energy-saving methodologies for
Green IoT is provided in [10]–[12].

Energy Harvesting for Green IoT is another key strategy
in green IoT, and it involves capturing energy from ambient
or external renewable sources such as solar (photovoltaic),
radio frequency (RF), wind, and mechanical vibrations. How-
ever, maintaining consistent energy availability remains a
challenge due to the intermittent and unpredictable nature
of these renewable sources [13]. Additionally, the energy
harvested by IoT devices is often limited, typically in the
range of a few hundred milliwatt-hours (mWh) or, in some
cases, as low as a few hundred micro-watt-hours (µWh). This
constraint underscores the importance of efficient energy
management to maximize operational efficiency. A detailed
review of various energy harvesting techniques for green IoT
is provided in [1], [12].

Designing energy-efficient IoT nodes requires careful con-
sideration of energy leakage. Properly sizing energy harvest-
ing and storage systems is essential to compensate for energy
losses, thereby reducing the likelihood of service outages and
prolonging the operational lifespan of the nodes. While many
studies on IoT node energy performance [3], [14]–[23] have
not accounted for energy leakage in storage systems, some
have specifically analyzed its effects on wireless communi-
cation nodes [24]–[29]. IoT systems are also often supported

by computational and data storage servers, so that recent
work has also considered the optimum allocation of tasks to
multiple diverse processors as to optimize performance and
minimize energy consumption of the system [30].

A common technique for evaluating IoT energy perfor-
mance—without focusing on the complexities of harvesters,
nodes, or storage systems—is to model energy in discrete
units called energy packets. Introduced in [14], [15], this
approach employs queueing theory to represent the charging
and discharging behavior of ESSs. Further exploration of this
concept can be found in [16], [31], [32].

Within this framework, energy harvested and stored in
the battery is modeled as packet arrivals, whereas energy
consumption is treated as packet servicing. Unlike traditional
queueing models—where the service rate must exceed ar-
rivals to prevent overload—an ESS must ensure a higher
energy arrival rate than consumption to avoid depletion-
induced service interruptions [24]. Another method char-
acterizes energy variations within an ESS as a continuous
stochastic process, such as fluid flow [17]–[19] or diffusion
models [3], [21]–[23]. A major challenge when incorporating
inefficiencies like leakage is that it introduces an additional
deterministic or stochastic process that interacts with energy
arrival and consumption dynamics. Moreover, since leakage
is directly influenced by the ESS’s current energy level, it
cannot be treated as an isolated factor but remains intrinsi-
cally linked to the energy storage and usage processes.

II. MAIN CONTRIBUTIONS OF THE PAPER
Most existing studies on the interaction between energy
harvesting, leakage, and consumption processes, including
those cited above, assume that the mean energy harvesting
rate or the mean rate of energy packet delivery to the energy
storage system remains constant. Consequently, these studies
primarily rely on steady-state analysis. However, in real-
world scenarios, energy harvesting is influenced by random
and unpredictable environmental factors, making it inher-
ently stochastic and time-varying.

A Markov process is commonly used to model fluctuations
in the mean energy harvesting rate caused by changes in
weather conditions. In [33]–[35], the authors employed a
two-state Markov chain to represent the energy harvesting
process, where one state corresponds to active energy har-
vesting, while the other represents periods with no harvested
energy. Similarly, the authors in [28], [36] proposed a four-
state Markov model to capture weather state transitions,
which, in turn, influence the energy harvesting rate over time.

Given the stochastic nature of energy harvesting, incorpo-
rating time-dependent variations in the harvesting rate into
energy performance models is crucial for accurately evaluat-
ing the behavior of energy storage systems (ESSs). Modeling
the interplay between transient energy harvesting, leakage,
and consumption processes provides valuable insights into
the relationships between key design parameters—such as
the energy capacity of the ESS, mean energy consumption
rate, energy threshold, energy leakage parameter, and energy
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leakage model—and critical performance metrics, including
the mean number of stored energy packets and the probability
of complete energy depletion (energy service outage proba-
bility).

In this paper, we introduce a mathematical framework to
analyze the dynamic interactions between time-dependent
energy harvesting, leakage, and consumption processes in
green IoT networks. Specifically, we propose:

• An energy packet model for the energy storage system
that accounts for transient energy dynamics.

• A Markov model to characterize the time-dependent
fluctuations in the mean energy harvesting rate.

• To validate our approach, we conduct numerical simu-
lations to evaluate the impact of key design parameters.

We assess their effects on critical energy performance met-
rics, such as the transient mean number of stored energy
packets and the probability of complete energy depletion.

III. DESCRIPTION OF THE MODEL
Consider a green IoT system comprising a sensor device,
an energy storage system, and an energy harvesting system,
as illustrated in Fig. 1. The system follows a harvest-store-
consume energy configuration, meaning that the harvested
energy is first stored and subsequently utilized for operation.

For analytical tractability, we model the energy packet
arrival process to the storage system as a Poisson process,
while the energy consumption process follows an expo-
nential distribution. Although these assumptions may not
always perfectly reflect real-world conditions, they serve as
a first-order approximation, providing a tractable analytical
framework. This allows for deeper insights into the dynamic
interactions between energy harvesting, leakage, and con-
sumption processes, facilitating performance evaluation and
optimization of energy-efficient IoT systems.

A. ENERGY PACKET MODEL FOR THE ENERGY
STORAGE SYSTEM
The discretization of energy into packets requires defining
a quantization step, which corresponds to the size of an
energy packet. An energy packet, measured in mWh or mAh,
represents a pulse of power or current over a specific time
duration.

Since energy is primarily consumed during active pe-
riods—when the node performs sensing, computation, or
communication—the energy packet size can be expressed as:

Ep = Pactive · tactive, (1)

where Pactive denotes the power consumed during active
periods, and tactive represents the time of activity.

Although the quantization step can be arbitrarily chosen,
consistency is required across energy harvesting, consump-
tion, and storage processes.

Let CB (in mWh) represent the capacity of the energy stor-
age system (ESS), which could be a battery or supercapacitor.

The total number of energy packets the ESS can store is given
by:

B =
CB

Ep
, (2)

implying that the ESS can hold up to B discrete energy
packets, with possible energy states {0, 1, 2, . . . , B}. We
assume the IoT node remains in a dormant state and activates
only when triggered by an external event, e.g. a system
supervising a piplinne is ewaken by the detection of a fluid
leakage. The assume that such events are defined by the
Poisson process. The time needed to consume an energy
unit has the exponential distribution. These assumptions,
while not universally precise, serve as a practical first-order
approximation for analytical tractability.

The energy storage system’s dynamics is modeled using
an M(t)/M(n)/1/B queueing system. In Kendall’s notation
[37], this corresponds to a system with exponentially dis-
tributed interarrival and service times, a single server, and
finite storage capacity of B energy packets. The notation
M(n) accounts for a state-dependent service rate and M(t)
for time-dependent arrival rate.

Energy packet arrivals follow a Poisson process, implying
exponentially distributed interarrival times with rate λ. The
consumption time of an energy packet is also exponentially
distributed, with rate µ(n), where n denotes the number of
stored energy packets.

In an extended Markovian framework, phase-type distri-
butions can replace the exponential assumption to better ap-
proximate real-world energy dynamics, though this increases
the complexity by introducing additional states and imposes
purely numerical solution.

The service rate µ(n), representing the inverse of the
average service time, is given by:

µ(n) = µi + θ(n), (3)

where µi is the base energy consumption rate and θ(n)
accounts for state-dependent energy leakage.

We assume that the consumption rate varies depending on
the device’s operational mode. When stored energy exceeds
a threshold K (n > K), the system operates normally with
µi = µ2. If the energy level falls below K (n ≤ K), the
device switches to an energy-saving mode with µi = µ1.

Three types of leakage rate functions θ(n) are considered:
• linear leakage rate, proportional to stored energy [24],

[38]:
ϑ(n) = (n− 1)ξ (4)

• exponential leakage rate is exponentially related to the
stored energy and is common in supercapacitors [28]:

ϑ(n) = αeξ(n−1), n ≥ 1. (5)

• constant leakage rate, independent of stored energy
[26]:

ϑ(n) = αξ. (6)
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FIGURE 1: The architecture of a green IoT node with erratic energy sources.

This model provides a structured approach for analyzing
energy storage behavior in IoT devices under varying condi-
tions.

The evolution of energy packet levels in the ESS is mod-
eled as an M(t)/M(n)/1/B Markovian queueing process
{N(t) | t ≥ 0}. The probability of having n energy packets
at time t is denoted as p(n, t) = Pr{N(t) = n}.

The system dynamics are governed by the following first-
order differential equations [39]:

dp(0, t)

dt
= −λp(0, t) + µ(1)p(1, t),

dp(n, t)

dt
= −(λ+ µ(n))p(n, t) + λp(n− 1, t) (7)

+µ(n+ 1)p(n+ 1, t), n = 1, . . . B − 1,

dp(B, t)

dt
= λp(B − 1, t)− µ(B)p(B, t). (8)

In the steady-state condition (t → ∞), the system tran-
sitions to an equilibrium state where these differential equa-
tions reduce to algebraic equations [39]:

p(n) = p(0)
λn

µ(1) · · ·µ(n)
, n = 1, . . . , B. (9)
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By enforcing the normalization condition
∑B

n=0 p(n) = 1,
we obtain:

p(0) =
1

1 +
∑B

n=1

(
λn∏n

i=1 µ(i)

) . (10)

This framework enables performance analysis of IoT en-
ergy storage systems under different operational constraints
and event-driven consumption patterns.

B. TIME-DEPENDENT STOCHASTIC PROCESS FOR
ENERGY HARVESTING
Since the energy harvested depends on random and un-
predictable environmental variables, it exhibits a stochastic
nature. The mean energy harvesting rate, denoted as λ, varies
over discrete time intervals ∆t. The evolution of λ can be
modeled as either a random process or a Markov process.

Within each time interval ∆t, λ is drawn from a predefined
range [λmin, λmax]. In some simulations, λ is assumed to
follow a uniform distribution, generating a new random value
at each time step.

Alternatively, the time-dependent mean arrival rate of en-
ergy packets, λ(t), can be modeled as a Markov process with
N states and transition probabilities pij . The value of λ is
influenced by dynamically changing environmental factors
such as wind, sunlight, vibrations, cloud cover, and rainfall.

Consider a two-state Markov model that represents the
environmental energy states S0 and S1 within each interval
∆t. This type of model has been discussed in [33]–[35]. The
transition probabilities between the two states are p00, p01,
p10, and p11, which can be estimated from empirical data
[35]. The state transition matrix is given by:

P =

[
p00 p01
p10 p11

]
where:

• p00 is the probability of remaining in state S0,
• p01 is the probability of transitioning from S0 to S1,
• p10 is the probability of transitioning from S1 to S0,
• p11 is the probability of remaining in state S1.
A more complex model can be defined using a three-

state Markov chain (S0, S1, S2) to represent different weather
conditions such as sunny, cloudy, and rainy, which influence
the state of a solar energy harvester. The corresponding
values of λ for each state are λ = {λ0, λ1, λ2}. A four-state
weather model was explored in [28], [36], where the state
transition matrix is:

P =


p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33


Once the state transition matrix is defined, the Markov

chain can be used to simulate dynamic state changes over
time. The state at each time step determines the correspond-
ing value of λ.

IV. TRANSIENT-STATE ENERGY PERFORMANCE
ANALYSIS
We analyse the transient-state energy performance of the
ESS with and without energy thresholds. While steady-state
analysis assumes constant mean rates for energy packet de-
livery to and consumption from the ESS, the mean number
of harvested energy packets can fluctuate over time. We
evaluate the impact of parameters such as energy leakage
rate, energy harvesting rate, and the energy consumption rate
on the energy performance metrics such as the service outage
probability at time t, p(0, t) and the mean number of energy
packets present in the ESS at time t, E[N(t)].

In the case of a single threshold and linear leakage rate,
a simplified version of the differential equations in (8) can
be obtained. Therefore, the following system of equations
governs the time evolution of the state probabilities p(0, t),
p(n, t), and p(B, t), describing the dynamic behavior of the
system over time.

For p(0, t) (empty state probability):

dp(0, t)

dt
= −λp(0, t) + µ1p(1, t) (11)

For intermediate states p(n, t), where 1 ≤ n ≤ K − 1:

dp(n, t)

dt
= −(λ+ µ1 + (n− 1)ξ)p(n, t)

+λp(n− 1, t) + (µ1 + nξ)p(n+ 1, t) (12)

For intermediate states p(n, t), where K ≤ n ≤ B − 1:

dp(n, t)

dt
= −(λ+ µ2 + (n− 1)ξ)p(n, t)

+λp(n− 1, t) + (µ2 + nξ)p(n+ 1, t) (13)

For p(B, t) (full state probability):

dp(B, t)

dt
= λp(B − 1, t)− (µ2 + (B − 1)ξ)p(B, t)(14)

Initially, the system is assumed to be in state P0(0), mean-
ing all probabilities are zero except for P0(0) = 1, ensuring
normalization.

The expected value of the number of energy packets in the
ESS at time t, denoted as E[N(t)] is the weighted sum of the
probabilities of being at each state n, i.e.,

E[N(t)] =

B∑
n=0

np(n, t).

The transient solution of (8) is more intricate. It can
be obtained using the Laplace transform, which converts
the system’s differential equations into algebraic equations
in the Laplace domain. This transformation allows for an
analytical solution, as demonstrated in [40]. However, this
solution must be inverted numerically. Alternatively, a direct
numerical approach can be used, as demonstrated here with
our solver [41]. Many other solvers may be helpful.

The results presented in Figs. 2-12 are obtained by nu-
merically solving the system described in equation 8. This is
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accomplished using Python libraries such as NumPy, SymPy,
and SciPy.

First, we define λ as a time-dependent function, λ(t), and
implement a function to generate its values dynamically.
The system of equations governing the time evolution of
the number of EPs in the ESS is then formulated. After
specifying the initial conditions—e.g., p(0, 0) = 1 if the
ESS is empty at t = 0 or p(B, 0) = 0 if the ESS initially
contains B energy packets—SciPy is used to solve the system
numerically.

To track the evolution of the mean number of energy
packets in the ESS, we compute the expected value of the
system at each time step. That is, at each time interval ∆t, we
obtain the value λ using a stochastic process. The computed
values computed for each interval are then plotted using
another Python library called MatplotLib.

To compute and plot the service outage probability, p(0, t),
we solve a system of differential equations that describe the
dynamics of the queue of stored energy packets under time-
varying arrival rates λ(t).

Using a Markov chain, we generate a sequence of weather
states that influence the evolution of λ(t) over time. Each
weather state corresponds to a distinct arrival rate λ(t). The
probability distribution p(n, t) for different system states is
governed by a set of coupled differential equations, which
are solved using the solve_ivp function from SciPy.

Once the values of p(0, t) are computed for each time
interval ∆t across various values of λ, they are visualized
to analyze the system’s performance.

Once the system is solved, p(0, t) is plotted over time
using a logarithmic scale. The results illustrate how p(0, t)
evolves under different service rate modification strategies.
Additionally, the time-dependent arrival rate λ(t) is overlaid
on a secondary axis to highlight the impact of weather-
induced variations in arrival intensity.

V. NUMERICAL SIMULATION RESULTS
In the presented numerical simulation results, we consider a
battery with a charge rating of Q = 2100 mAh, a depth of
discharge (DoD) of 70%, and a voltage of v = 3.7 V. The
corresponding energy capacity of the battery is given by:

CB = 2100× 0.7× 3.7 = 5439 mWh

We assume that energy is quantized into discrete packets,
with each packet having a size of Ep = 54.39 mWh.
Consequently, the battery can store a maximum of:

B =
5439

54.39
= 100 energy packets

For each numerical example, the relevant parameter values
are provided alongside the corresponding figure.

A. THE IMPACT OF SYSTEM PARAMETERS ON THE
MEAN NUMBER OF STORED ENERGY PACKETS
The mean number of stored energy packets is a key perfor-
mance metric, as a higher number of stored packets allows

FIGURE 2: The evolution of E[N(t)], for various values of
ξ and randomly changing λ(t): µ2 = 5, µ1 = 3, K = 40,
B = 100

FIGURE 3: The evolution of E[N(t)], for various values of
K and randomly changing λ(t): µ2 = 5, µ1 = 3, ξ = 0.01,
B = 100

the device to operate for a longer duration without depleting
its energy reserves. If the stored energy is exhausted, the
device will shut down.

We analyze the impact of model parameters such as λ, µ,
ξ, and K on the mean number of stored energy packets. In
each presented result, the values of λ(t) are generated by a
stochastic process that updates λ at regular or random time
intervals ∆t.

For Figs. 2 and 3, the values of λ(t) are randomly gen-
erated using a uniform distribution with λmin = 0 and
λmax = 12. The values of λ change every ∆t = 12 hours.
The remaining parameters are specified in the figures and
their captions. Fig. 2 illustrates the evolution of E[N(t)] for
different values of ξ. In general, as the leakage parameter ξ
increases, the mean number of energy packets (EPs) in the
ESS decreases due to higher energy leakage. Fig. 3 shows the
evolution of E[N(t)] for various values of K. Higher values
of the energy threshold K generally lead to an increase in
the mean number of EPs in the ESS. This occurs because
when the threshold is reached early—while sufficient energy
remains in the ESS—the node enters energy-saving regimes
sooner, slowing the depletion of stored EPs.

The time-dependent function λ(t) can be derived from a
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FIGURE 4: The evolution of E[N(t)], for various values of
ξ and λ(t) from a weather Markov chain (λmin = 5 and
λmax = 12): µ2 = 5, µ1 = 3, K = 40, B = 100

FIGURE 5: The evolution of E[N(t)], for various values of
ξ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 5 and λmax = 12): µ2 = 5, µ1 = 3, B = 100

weather Markov chain. We model the weather as a simple
two-state Markov chain, where each state represents a differ-
ent weather condition (e.g., sunny and rainy or sunny and not
sunny). The state transitions determine the energy delivery
rate λ(t), which varies based on the current weather state.

When the weather state is S0, the mean energy delivery
rate is λmax, with a certain probability of transitioning to
the S1 state. Conversely, when the weather state is S1, the
mean energy delivery rate is λmin, with a probability of
transitioning back to the S0 state.

The transition matrix for this two-state Markov chain is
given by:

P =

[
0.8 0.2
0.3 0.7

]
Fig. 4 shows the evolution of E[N(t)] for various values

of ξ, where λ(t) is generated using the weather Markov
chain with λmin = 5 and λmax = 12. The observed trend
is consistent with that of Fig. 2, as discussed earlier. Also,
Fig. 5 shows the evolution of E[N(t)], for various values
of ξ, without considering the energy threshold K, and the
values of λ(t) are generated from a weather Markov chain
(λmin = 5 and λmax = 12). The trend is the same as in Figs.
2 and 4.

FIGURE 6: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 5 and λmax = 18): ξ = 0.01, B = 100

FIGURE 7: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 0 and λmax = 18): ξ = 0.01, B = 100

Since increasing or decreasing the energy harvesting rate
can mitigate the impact of energy leakage, we analyse the
influence of the mean energy harvesting rate and mean energy
consumption rate on the evolution of the mean number of
energy packets (EPs) in the ESS. Fig. 6 illustrates the evolu-
tion of E[N(t)] for various values of µ, without considering
the energy threshold K, where λ(t) is generated using a
weather Markov chain with λmin = 5 and λmax = 12.
Similarly, Fig. 7 presents the evolution of E[N(t)] under the
same conditions, except that λ(t) is generated from a weather
Markov chain with λmin = 0 and λmax = 12.

In general, as the mean energy consumption rate µ in-
creases, the mean number of EPs in the ESS decreases. This
is expected, as higher values of µ lead to a faster depletion
of stored EPs. The key difference between Fig. 6 and Fig. 7
is that in Fig. 7, the weather model allows for periods where
no energy is harvested (λmin = 0), which results in more
pronounced fluctuations in E[N(t)].

Figure 8 depicts the evolution of E[N(t)] for various
values of ξ, excluding the impact of the energy threshold
K. The energy arrival rate, λ(t), is generated from a weather
Markov chain. When ξ = 0, the energy storage system (ESS)
is charged to full capacity, and the mean number of stored
energy packets remains above 80% of its maximum capacity.
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FIGURE 8: The evolution of E[N(t)], for various values of
ξ, no energy threshold K, and λ(t) from a weather Markov
chain: µ = 3, B = 100

FIGURE 9: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 0 and λmax = 12): ξ = 0.01, B = 100,
p(B, 0) = 0 (starting with B EPs in the ESS at t = 0)

As the energy leakage parameter ξ increases, the depletion
rate of stored energy packets increases, leading to a rapid
decline in energy packets in the ESS. For instance, when
ξ = 0.09, the mean number of stored energy packets reaches
zero before t = 60 time units. Conversely, lower values of ξ
result in higher values of the mean number of energy packets
over time. Since the leakage rate is an inherent characteristic
of energy storage systems and beyond the control of an
IoT system designer, mitigating its impact on the node’s
lifetime necessitates either reducing energy consumption or
increasing energy harvesting rates.

The results presented in Figs. 2–8 assume that the energy
storage system (ESS) initially contains zero energy packets
(EPs) at time t = 0, i.e., p(0, 0) = 1. However, it is also
possible to begin with B energy packets in the ESS at t = 0,
represented as p(B, 0) = 1. The results shown in Figs. 9–
12 are obtained under this assumption, meaning the system
starts with B EPs at t = 0.

The observed trends regarding the influence of the mean
energy consumption rate µ and the energy leakage parameter
ξ remain consistent with those in Figs. 2–8. This consistency
indicates that our proposed transient analysis framework is
independent of the initial number of energy packets, whether

FIGURE 10: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 0 and λmax = 12): ξ = 0.01, B = 100,
p(B, 0) = 0 (starting with B EPs in the ESS at t = 0)

FIGURE 11: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 0 and λmax = 12): ξ = 0.0, B = 100,
p(B, 0) = 0 (starting with B EPs in the ESS at t = 0)

FIGURE 12: The evolution of E[N(t)], for various values of
ξ, no energy threshold K, and λ(t) from a weather Markov
chain (λmin = 0 and λmax = 12): µ = 3, B = 100,
p(B, 0) = 0 (starting with B EPs in the ESS at t = 0)
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FIGURE 13: The evolution of E[N(t)], for various values
of ξ, no energy threshold K, and λ(t) generated from a four
state weather Markov chain: µ = 3, B = 100, p(0, 0) = 0
(starting with n = 0 EPs in the ESS at t = 0)

FIGURE 14: The evolution of E[N(t)], for various values of
µ, no energy threshold K, and λ(t) generated from a four
state weather Markov chain: ξ = 0.05, B = 100, p(0, 0) = 0
(starting with n = 0 EPs in the ESS at t = 0)

it is zero or B at t = 0.
The mean energy delivery rate function, denoted as λ(t),

can be modeled using a Markov chain with any num-
ber of states. While previous examples considered a two-
state Markov chain, we now extend the analysis to a four-
state Markov chain, where each state corresponds to differ-
ent weather conditions: Night (low or no energy), Sunny
(high energy), Cloudy (medium energy), and Rainy (low to
medium energy). Although this model focuses on solar en-
ergy, it can be generalized to incorporate multiple renewable
energy sources that fluctuate based on weather conditions.
In such cases, the number of states could increase to better
capture system complexities.

The authors in [42] studied the transient charging and dis-
charging of a supercapacitor under varying transient energy
harvesting rates, where the energy harvest rate λ(t) fluctuates
over time. Suppose that the values of λ(t) are generated from
a four-state Markov chain governed by the transition matrix:

P =


0.7 0.2 0.1 0.0
0.1 0.6 0.2 0.1
0.2 0.3 0.4 0.1
0.3 0.1 0.3 0.3



FIGURE 15: The evolution of E[N(t)], for various energy
leakage functions ϑ(n), no energy threshold K, and λ(t)
generated from a four state weather Markov chain: ξ = 0.01,
µ = 3, B = 100, p(0, 0) = 0 (starting with n = 0 EPs in the
ESS at t = 0)

Figs. 13–15 illustrate the results obtained using the four-
state Markov chain. Specifically, Fig. 13 examines the influ-
ence of the energy leakage parameter ξ on the evolution of the
mean number of energy packets (EPs) in the energy storage
system (ESS), while Fig. 14 investigates the impact of the
energy consumption rate µ. The observed trends align with
the findings from previous figures that analyzed the effects of
ξ and µ on the mean number of EPs in the ESS. A key aspect
of these figures is the incorporation of a four-state Markov
chain with four distinct values of λ(t) (e.g., λ = 0, 12, 5, 2
corresponding to the states Night, Sunny, Cloudy, and Rainy,
respectively).

Another significant result is shown in Fig. 15, which ex-
plores the impact of different energy leakage functions θ(n)
on the evolution of the mean number of EPs in the ESS. Three
energy leakage models are considered:

• Linear energy leakage: θ(n) = (n− 1)ξ
• Exponential energy leakage: θ(n) = e(n−1)ξ

• Constant energy leakage: θ(n) = ξ

The results indicate that the exponential energy leakage
model performs the worst, followed by the linear model.
This is because, in the exponential energy leakage model,
the energy leakage rate grows exponentially with the number
of EPs remaining in the ESS, whereas in the linear model,
the leakage rate increases linearly. Experimental studies have
demonstrated that energy leakage in supercapacitors often
follows an exponential model [43]–[45].

B. THE IMPACT OF SYSTEM PARAMETERS ON THE
SERVICE OUTAGE PROBABILITY
In this section, we compute the transient probability of
service outage, which quantifies the likelihood of complete
energy depletion in the system. Reducing the service outage
probability is essential to ensure continuous operation and
prevent disruptions caused by the shutdown of the IoT node
due to insufficient stored energy.

Following the approach used in the numerical simulations
for the transient mean number of stored energy packets,
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FIGURE 16: The evolution of p(0, t), for various energy con-
sumption rate µ, no energy threshold K, and λ(t) generated
from a four state weather Markov chain: ξ = 0.01, B = 100,
p(0, 0) = 1 (starting with n = 0 EPs in the ESS at t = 0)

FIGURE 17: The evolution of p(0, t), for various energy con-
sumption rate µ, no energy threshold K, and λ(t) generated
from a four state weather Markov chain: ξ = 0.05, B = 100,
p(B, 0) = 1 (starting with n = B EPs in the ESS at t = 0)

we investigate how key model parameters—λ, µ, ξ, and
K—influence system performance.

Figures 16-20 illustrate the evolution of the transient prob-
ability of depleting all stored energy packets. These results
are obtained using the four-state Markov chain representing
weather conditions, which was previously employed in the
numerical simulations of the transient mean number of stored
energy packets. All other relevant parameters are provided in
the figure captions.

In the simulations of p(0, t), we assume B = K, meaning
that the mean energy consumption rate, µ, remains constant.

The general trend observed is that the transient probability
of energy depletion, p(0, t), varies dynamically with changes
in the mean energy delivery rate, λ(t). If the initial number of
stored energy packets is n = 0 at t = 0, then p(0, 0) = 1, and
p(0, t) evolves according to variations in λ(t). Conversely, if
the system starts with n = B energy packets at t = 0, then
p(0, 0) = 0, and p(0, t) increases dynamically based on the
fluctuations in λ(t).

In the simulations, the mean energy consumption rate is set
to µ = {5, 8, 11}. The values of λ corresponding to the en-
ergy states S0, S1, S2, and S3 are given by: λ = {0, 12, 5, 2}

FIGURE 18: The evolution of p(0, t), for various leakage
parameter ξ, no energy threshold K, and λ(t) generated from
a four state weather Markov chain: µ = 3, B = 100,
p(0, 0) = 1 (starting with n = 0 EPs in the ESS at t = 0)

FIGURE 19: The evolution of p(0, t), for various leakage
parameter ξ, no energy threshold K, and λ(t) generated from
a four state weather Markov chain: µ = 3, B = 100,
p(B, 0) = 1 (starting with n = B EPs in the ESS at t = 0)

with the corresponding state transition probability matrix:

P =


0.7 0.2 0.1 0.0
0.1 0.6 0.2 0.1
0.2 0.3 0.4 0.1
0.3 0.1 0.3 0.3


It is observed that when the mean energy harvesting rate,

λ, decreases from higher to lower values, the probability of
energy depletion at time t increases, and vice versa.

Figures 16 and 17 show the influence of the mean en-
ergy consumption rate, µ, on p(0, t). The results indicate
that the probability of depleting all stored energy packets
increases significantly with higher energy consumption rates.
This increase is particularly pronounced during time intervals
when the mean harvesting rate, λ, is lower than the mean
consumption rate, µ. The key difference between Figures 16
and 17 is the initial energy level: in Figure 16, the system
starts with n = 0 at t = 0, whereas in Figure 17, it starts
with n = B.

Figures 18-20 illustrate the impact of the energy leakage
rate on the probability of depleting all stored energy packets.
Specifically, Figures 18-19 show the influence of the energy
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FIGURE 20: The evolution of p(0, t), for various energy
leakage functions ϑ(n), no energy threshold K, and λ(t)
generated from a four state weather Markov chain: ξ = 0.01,
µ = 3, B = 100, p(0, 0) = 0 (starting with n = 0 EPs in the
ESS at t = 0)

leakage parameter ξ on p(0, t). The general trend indicates
that as ξ increases, the probability of energy depletion also
increases.

The key difference between the results in Figures 18 and
19 lies in the initial energy levels. In Figure 18, the system
starts with n = 0 at t = 0, meaning there is no energy packet
in the energy storage system (ESS) initially. In contrast,
Figure 19 assumes n = B at t = 0, meaning the ESS starts
with B stored energy packets. Additionally, in Figure 19, the
values of p(0, t) are displayed on a logarithmic scale to better
observe very small probabilities. This is necessary because
starting with n = B energy packets at t = 0 results in
extremely low values of p(0, t).

The results in Figures 16-19 are computed using the linear
energy leakage model. In Figure 20, we analyze the effect
of different energy leakage models on p(0, t). The highest
values of p(0, t) are observed with the exponential leakage
model, followed by the linear leakage model, and finally, the
constant leakage model, which results in the lowest values
of p(0, t). This occurs because, in the exponential leakage
model, the energy leakage rate increases exponentially with
the number of stored energy packets. Consequently, the con-
stant leakage model exhibits the lowest probability of service
outage, followed by the linear leakage model, and finally,
the exponential leakage model, which results in the highest
service outage probability.

VI. CONCLUSION
In this paper, we introduced a novel mathematical frame-
work to analyze the dynamic interactions between time-
dependent energy harvesting, leakage, and consumption pro-
cesses in green IoT networks. By incorporating transient
energy dynamics and utilizing a Markov model to capture
fluctuations in the energy harvesting rate, we were able to
provide a more accurate representation of the challenges
faced by IoT devices in real-world environments. Through
our numerical simulations, we demonstrated the significant
impact of key design parameters, such as energy storage

system capacity, mean energy consumption rate, energy leak-
age, and variations in energy harvesting rates, on critical
performance metrics like the probability of energy depletion
and the transient mean number of stored energy packets.
Our findings emphasize the necessity of accounting for time-
varying energy harvesting rates and non-idealities in energy
storage systems to enhance the reliability and sustainability
of green IoT systems. Future work will focus on refining the
proposed models and exploring optimization strategies for
improving energy efficiency in IoT deployments, particularly
in resource-constrained environments.
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