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a b s t r a c t

Classification of noisy data has been a longstanding topic in data mining and machine
learning. Many scientists have proposed effective methods to detect and eliminate such
data in diverse real-world datasets. In this paper, we deal with mislabeled instances in
supervised learning, including majority voting filtering and consensus voting filtering.
The majority voting procedure usually incorrectly identifies many correct instances as
noisy, whereas the consensus voting procedure is not able to detect at all many noisy
instances. Our new method minimizes the majority and consensus filtering weaknesses
by providing a novel class noise detection strategy, namely a high agreement voting
filtering with mixed strategy, which proceeds by removing strong and semi-strong
noisy records from the dataset as well as by relabeling weak noisy data. The proposed
method, designed for binary classification problems, outperforms the high agreement
voting filtering procedure. Extensive experiments conducted with 16 real datasets, using
four noise filtering methods with two levels of class noise (10% and 15%), prove the
superiority of the proposed methodology.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

During multiple data collection processes some errors, having negative effects on information which can be derived
from data, may occur. It has been observed that existing errors in datasets would decrease the performance of machine
learning models. Thus, to improve the performance of machine learning models, data preprocessing steps should be carried
out. It has also been noticed in the related literature that one of the main issues in data mining is dealing with noisy data
to increase the accuracy of prediction [1].

Noisy data appear in three forms: instances with wrong labels are known as class noise, instances that have wrong
attribute values or abnormal attribute values are known as attribute noise [2], and the combination of both [3–7].
Mislabeling of training data occurs because of insufficient information about instances [4]. Class noise has more effects
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on decreasing performance accuracy of data mining methods rather than attribute noise. This happens because of the
two following facts: (1) for each sample in the dataset, there are multiple features, but there is just one label, (2) each
attribute may have a bold or faint impact on learning methods, but the class label always has a strong impact on the
learning process. Only in one case feature noise is more harmful than label noise. This occurs when there are a lot of
polluted attributes in the data [5,8]. The existence of class noise implies that the wrong labeling of training samples has
disruptive effects on the dataset [9].

Many papers describe the application of noise detection classification methods in health science and bioinformatics [4,
10]. To do so, two common approaches have been used. First of them concentrates on new noise-resistant classification
strategies [11], while the second focuses on data filtering during the preprocessing phase [10]. In this paper, we describe
a new methodology based on data preprocessing. Hence, we try to fill the gap between two ensemble voting filtering
methods, namely Majority Voting Filtering (MF) method and Consensus Voting Filtering (CF) method. The performance
of the proposed method was compared to MF and CF, which were recommended for removing misclassified samples in
many studies [9,12–14].

Sluban et al. [3] studied the relation between the performance of various noise detection ensembles and the diversity of
heterogeneous ensembles related to classification methods. To do so, they applied the MF and CF methods to identify class
noise data. The application of the MF method for detecting class noise in ensemble algorithms yields high recall values, but
low precision values, and thus leads to misclassifying many regular instances as noisy. In contrast, the application of the
CF method usually yields high precision, but low recall, and thus results in an inability to detect many noisy instances.
The use of consensus voting ensemble algorithms is appropriate when the most significant noisy instances should be
detected and removed. Experimental observations show that more diversity in CF leads to achieving higher precision of
noise labeling detection, but fewer diversity results in higher recall and F-score values [3].

To compensate for the weaknesses of the MF and CF methods in detecting class noise, we propose a new hybrid
method, namely High Agreement Voting Filtering (HAVF) using mixed strategy. The HAVF method using mixed strategy
removes strong and semi-strong noisy samples and relabels weak noisy instances. The proposed noise detection method
includes three main steps. The first step consists in detecting noise instances. At this phase, the detected noisy instances
are split into three groups, including weak noise, semi-strong noise, and strong noise. In the second step, the strong
and semi-strong noisy instances are removed from the dataset (filtering step). Finally, the weak noisy instances are
relabeled (correction step). In our opinion, applying HAVF with mixed strategy (removing and relabeling) could raise
the classification accuracy, compared to the MF and CF methods. The main contributions of this work are summarized
below:

• The proposed method, i.e., HAVF using mixed strategy, reduces the existing gap between the MF and CF methods [3].
The MF method incorrectly identifies many correct samples as noisy samples [15], what makes it very inaccurate,
specifically when it comes to datasets with low levels of noise [16,14,9]. In contrast, the CF method is not able to
detect many noisy samples. The CF method is too conservative in detecting mislabeled samples, which makes it
unsuitable for detecting noisy data in datasets containing low amounts of mislabeled samples [9,15,16]. Thus, we
propose a new hybrid algorithm to minimize the above-mentioned weaknesses.

• The novelty of the proposed method is that it not only helps to detect noisy data that would not be identified as
class noise by CF, but also decreases the amount of removed regular instances that would be misidentified as noisy
samples by MF, especially when the noise level is low [14]. While the use of the mixed strategy helps the proposed
method to be more resistant in removing correct samples, compared to MF [14], it is not as conservative as CF. It is
worth noting, the proposed method is designed for binary classification problems.

• This study also opens doors for applying HAVF using mixed strategy to manage class noise, especially for data with
low level of noise. Applying MF on low level noisy datasets usually results in discarding many valid samples and
decreasing the performance of machine learning algorithms [14]. Thus, we propose to modify the class noise samples
by relabeling them instead of removing them incorrectly as noisy data.

The rest of the paper is organized as follows. Section 2 briefly discusses related work in the field. In Section 3, we
describe the proposed method in detail. Our experimental validation and the obtained results are presented in Section 4.
In Section 5, we discuss the advantages and disadvantages of the new method. Finally, we conclude the study in Section 6.

2. Related work

In this section, we first review some existing related studies. The preliminaries are discussed in Section 2.2.

2.1. Literature review

Lavrac et al. [17] presented a simple compression measure and its ability to detect noisy samples. The proposed
technique includes two steps: step one consists of detecting and removing potential noisy samples from the training set
(i.e., called the saturation filter step) and step two is the formatting hypothesis. The application of a simple compression
measure leads to the detection of noisy samples without constructing a hypothesis from the training set. Potential noisy
samples may include outliers which should be added as exceptions to the generated rule after the formatting hypothesis.
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Although the class noise handling mechanisms such as Inductive Learning by Logic Minimization (ILLM) integrated to
saturation filter, i.e., C4.5, k-nearest neighbors (KNN) and CN2, outperform the proposed saturation filter method in
preprocessing, the superiority of the method described in [17] is related to a clear detection of error. One of the advantages
of the method by Lavrac et al. is shown on the problem of early diagnosis of rheumatic diseases. On the cleaned datasets,
obtained by applying the multiclass saturation, the CN2 learning algorithm without noise handling mechanism yielded
a better accuracy, of 0.453, compared to CN2 with noise handling mechanism, 0.429 and 0.45, on the original data [17].
The removal of noisy samples led to better relative information scores. It is worth noting that the application of the
multiclass saturation filter in tandem with the C4.5 pruning provided the accuracy of 0.746 which was better than the
accuracy values of 0.728 and 0.744, which were obtained respectively by using the proposed filtering method without
applying pruning and by using pruning without using saturation filtering. Combining KNN with the proposed filtering
method yielded the accuracy of 0.748, outperforming the saturation method used in solo (i.e. without being combined
with KNN filtering).

Sáez et al. [18] have analyzed the performance of three classifiers (C4.5, Support vector machine (SVM), and nearest
neighbor (NN) rule), with and without noise filtering, considering six different noise filters and 12 medical datasets with
different noise levels. SVM classifier is commonly able to provide a good performance when no noise filtering is applied.
Applying noise filtering methods is necessary when the noise level is high. Good performance has been usually provided
the following filters: Ensemble Filtering (EF), Iterative-Partitioning Filter (IPF), and NCNE (Nearest Centroid Neighborhood
Edition). For instance, the application of the IPF, EF, and NCNE filtering methods to the Breast cancer, Parkinson, and Statlog
Heart datasets, with 10% of added noise data led to the accuracy values of 0.8052, 0.8615, and 0.8037, respectively.

Guan et al. [19] presented a survey paper which focuses on mislabeled data as well as on the related data detection
techniques, namely Local learning-based, Ensemble learning-based, and Single learning-based methods. These authors
highlighted the fact that different types of methods have their own advantages and disadvantages, and that there is no
best method overall since the obtained results depend on the characteristics of datasets and the related domain subject.
Local learning-based methods, edited the nearest neighbor, Nearest centroid neighbor edition, and Relative neighborhood
graph edition, have some advantages such as being easy to understand and implement. However, these methods assume
that the samples located close to each other always belong to the same class. Ensemble learning-based methods is another
type of mislabeled data processing methods, which includes MF and CF techniques. Although these methods rely on the
ensemble approach to detect mislabeled data, and thus provide a better accuracy than the competing methods, they also
have a high time complexity as they proceed by training multiple classification algorithms. Finally, Single learning-based
methods are presented by two main approaches, namely Decision trees (DT) and Neural networks (NN).

The performance of a filtering method on several datasets depends on the selected classification procedure. As a result,
we cannot consider a specific filtering technique as the best one for all datasets. Luís P.F. Garcia et al. [5] described a meta-
learning system to support the recommendation for choosing the most promising machine learning algorithm(s). The
proposed system is able to predict the performance related to each noise filter used to detect noisy data. Meta Learning
approach (MTL) recommends the selection of an appropriate algorithm for noise detection regarding the attributes of
the dataset. A meta-base should be created before applying MTL. From each dataset associated with a meta-example, a
collection of characteristics, namely meta-features are extracted [5,20,21]. By applying DEF (Dynamic Ensemble Filter)
and HARF (High Agreement Random Forest Filter) on the Ionosphere dataset, the F-measure value was 0.74 obtained.
Applying HARF on the Australian credit approval dataset resulted in the best F-measure value equal to 0.59. Using CVCF
(Cross-validated Committees Filter), DEF and PruneSF for Blood transfusion dataset provided the best F-measure value of,
0.44, among other filters. To detect and filter the random noise of the Parkinson dataset, AENN (All-k-NN) acts as the best
Filter with the F-measure value of 0.74. For the Statlog-heart dataset, the F-measure value of 0.52 was obtained using
DEF [5].

Nicholson et al. [22] proposed two novel algorithms for correcting class noise, namely Self-Training Correction (STC)
and Cluster-based Correction (CC). Self-Training Correction uses self-training for relabeling noise labels. Cluster-based
Correction is able to group instances to trace ground-truth labels. These authors also presented a method based on
consensus called polishing labels (PL) to change the value of attributes and labels. The experimental results showed that
only CC allows one to improves the values of all the three metrics: AUC, model quality and label quality. STC was the
best method in improving model quality, AUC in binary and multi-class datasets, and in improving label quality in binary
class datasets, whereas STC was the worst in improving label quality in multi-class datasets. It is worth noting that PL
was the worst in improving all scenarios. Despite the advantages mentioned above, the main weakness of these methods
was as follows: when the level of noisy label instances was lower than 10%, all the three-class noise correction methods
were unable to improve the quality of labels in more than a half of the considered experimental datasets. The inference
algorithms, namely KOS (Karger, Oh, & Shah) and Daiwid Skene (DS), were more effective consensus methods than the
MF technique. Overall, CC provided the best classification results, PL performed pretty satisfactorily, and STC provided
very inconsistent results. Average results obtained by applying PL, STC, and CC on all datasets in terms of the accuracy
were 0.85, 0.90, and 0.90, while the AUC values were 0.60, 0.79, and 0.79, respectively.

Sluban et al. [10] presented methods for noise ranking based on ensemble algorithms. These authors tried to assess the
performance of these algorithms as well as their publicly available web implementations. The first method, Noise Rank
ensemble-based procedure, detects and ranks the identified noise using a specific toolkit. The second method, applied
for visual performance evaluation (VIPER) of noise detection algorithms, compares the performances of noise detection
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algorithms via an intuitively understandable visualization of the obtained results. These method allows one create balance
among the precision and recall, applying the F-isoline and the ε-proximity assessment methodology. Sluban et al. showed
that ensemble filters and their HARF noise detection algorithms outperformed individual filters in terms of precision,
while Ens10 and HARF-80 were the most accurate algorithms for the TTT and KRKP datasets. However, HARF-80 was the
priciest algorithm in terms of the running time, for CHD and NAKE datasets. Ens1, Ens2, Ens3, and HARF-70 showed the
best performance in terms of the noise recall. The HARF-80 algorithm was able to generate the best F0.5-score results
(F0.5-score values were close to 0.94) for all datasets, except the TTT dataset for which Ens7 performed better.

Zhang et al. [23] proposed an Aggregate Ensemble (AE) learning framework in order to create a robust learning system
able to tolerate noisy samples in drifting data streams. Although most available methods propose preprocessing techniques
to clean noisy samples in data stream environments, these techniques are hard to apply in drifting data streams because
of the difficulty in differentiating noise from samples. AE learning framework can create much more accurate prediction
models from a noisy concept in drifting data streams. AE provided the average accuracy of 0.94 in the experiments
presented in [23].

Sáez et al. [24] proposed a new method, Iterative Noise Filter based on the Fusion of Classifiers (INFFC), for detecting
and filtering noise. This method is based on merging the output of several multiple classifiers in order to improve their
accuracy after the filtering process. The proposed method uses an iterative noise filtering algorithm that prevents from
considering the identified noisy instances at each new iteration of the filtering process. INFFC provided the average
accuracy of 0.812 by using the C4.5 classifier on 25 datasets corrupted by 10% of class noise. This was the best result
among other applied filtering methods and classifiers. Moreover, Sáez et al. [24] also proposed a noisy score strategy to
specify the amount of removed noisy instances at each iteration.

Sabzevari et al. [14] studied bootstrap ensemble algorithms applying them for identifying noisy class noise instances.
These authors explained the ability of subsampling to make the ensembles more robust to the label noise. The proposed
approach used both filtering and cleaning to tackle noisy data. The average test error rates obtained by using random forest
with filtering (FL_rf) and random forest with cleaning (Cl_rf) for 10% of noise were 0.143 and 0.155, respectively [14].

2.2. Preliminaries

To classify binary datasets artificially corrupted by class noise samples, we assume a feature space x ∈ Rd and a label
space y = {−1, +1}. In this study, we consider (X, Y, Ỹ ) ∈ x× y× y, where X represents the observations, Y indicates the
uncorrupted and unseen labels, and Ỹ denotes the noisy and observed labels. Aiming to make a classifier f : x → ywhich
is capable to predict Y (the class for each sample x) from X. In this study, the random classification noise (RCN) ρ1(X) = ρ

−1(X) = ρ was applied to create noise data, changing the label of each sample with the probability ρ∈ [0, 1). The employed
noise rate is denoted as follows [25]:

ρY (X) = P(Ỹ = −Y |X, Y ). (1)

Heterogeneous ensembles considered in our study employ several individual learning classifiers for predicting mislabeled
samples [3,26]. In ensemble voting methods, the base classifiers are combined using different combination rules for
creating the final ensemble classifier which detects class noisy samples [3]. Predictions of algorithms that give us the
class of test samples (like ‘mislabeled’ and ‘correct labeled’) can be combined using different voting methods such
as MF, CF, the proposed method, and HAVF using removing strategy. The reason for using the ensemble approach
instead of single learning-based methods is the ability of multiple classification algorithms to learn from each other in
a complementary manner [19]. Another merit of ensemble classifiers over single classifiers is their ability to modify the
weaknesses of individual ensemble members in order to increase the overall ensemble performance [3,27]. However, the
lack of data witnessed in several fields provides us with improper distributed data. Applying ensemble methods will allow
one to minimize wrong decision making when it comes to choosing the base learning algorithms [28].

2.2.1. Noise detection methods
A noise detection ensemble E of size L is created from a set of multiple individual algorithms {A1, . . ., AL} applied for

noise detection. In this study, four different pre-processing methods for identifying class noise have been used: (1) MF
method that removes class noise, (2) HAVF method that removes strong and semi-strong noisy data and also relabels
weak noisy data, namely HAVF using mixed strategy, (3) HAVF method that removes strong and semi-strong class noisy
data, namely HAVF using removing strategy, and (4) CF method that removes class noise. The MF and CF methods are
described below. Our novel method, HAVF, which removes strong and semi-strong class noises and relabels weak class
noises is presented in the Section 3.2.

2.2.1.1. Majority filtering (MF) method. If more than a half of the base classifiers Ai from E identify an instance x as noisy,
then the ensemble declares it as noisy. MF identifies an instance as mislabeled provided that more than a half of all
individual classifiers are unable to classify it with a correct label [29]. The weakness of this method is detecting correct
instances as noise, and as a result the elimination of correct samples from the data [3]. According to the MF method
presented in Algorithm 1 [30], the instances of Ei for which the majority of the base level algorithms misidentify the correct
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label are added to A as potentially noisy samples. We consider Eq. (2) to detect mislabeled samples of X by ensemble E
using MF. We assume that the output of the function δ for noisy samples is 1, otherwise it is 0.

MF =

l∑
i=1

δ (Ai (X)) > L/2 (2)

2.2.1.2. Consensus filtering (CF) method. CF identifies noisy instances only if all the base classifiers classify the instance
incorrectly. CF is more conservative than MF due to the stricter rules applied for noise detection. Such a stricter approach
keeps more undetected noisy instances in the dataset [29]. The CF method is represented in Algorithm 2 [30]. We consider
Eq. (3) to detect mislabeled samples of X by ensemble E using CF.

CF =

l∑
i=1

δ (Ai (X)) > L (3)

3. The proposed method

In this section, we first present the classifiers used in the framework of the proposed method. Then, the description
of our new method, i.e., HAVF using removing strategy is provided.

3.1. Classifying ensemble

Five base classifiers, namely KNN, SVM, Decision Tree (DT), Random Forest (RF) and Naive Bayes (NB), are used in
all four ensemble-based noise detection methods tested in our study. The advantage of ensemble classifiers over single
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classifiers is their ability to correct the errors of individual ensemble members, and thus improve the overall ensemble
classifier performance [3]. Each base classifier has its own performance for each dataset considered noisy dataset. This
leads to a wide range of different predictions and rather unstable predictions. Here, we briefly discuss the strong and
weak points of each individual classifier used in our study. KNN, for instance, is much more sensitive to noisy samples as
it demands clean class borders to make decisions. DT is more robust against noisy data. DT is usually capable of tolerating
low quantities of noisy data. Moreover, KNN is an expensive method in terms of computation as it requires a lot of
storage space [9,31]. NB is usually considered as a more robust algorithm to noisy samples than RF [32]. However, Folleco
et al. [33] showed that RF can provide very consistent classification results in some cases. It is worth noting that SVM is
not resistant to class noise [11] and only considers a subset of feature space and relevant features. SVM, KNN, RF, NB, and
DT have been used as filtering algorithms in many studies [10,12,34–37]. Ensemble models have been applied extensively
in credit scoring and other areas as they are considered to be more stable than base classifiers [38]. They are also able to
reduce the bias and variance of the model [39,40].

The ensemble-based voting methods, MF, HAVF using mixed strategy, HAVF using removing strategy, and CF, have been
used in this paper for noise detection. After detecting, removing/ relabeling noisy data, the bagging classification strategy
is applied to calculate the accuracy (Acc), specificity, sensitivity, STD, AUC and ROC metrics related to each dataset. These
six measures are used to compare the performances of the four ensemble-based methods compared in terms of dealing
with noisy data.

3.2. The proposed method: HAVF

The proposed method, HAVF using removing strong and semi-strong noisy instances and relabeling weak noisy
instances, improves the results of the MF method in terms of detecting noisy data. In other words, our new method
can cover the gap between MF and CF in identifying noisy instances. First, the strong and semi-strong noisy instances
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Fig. 1. Application of a classification filtering method (e.g., HAVF using mixed strategy) for different types of class noise.

are determined by the proposed method. Then, the weak noisy instances are relabeled. The definition of strong noisy
instances, semi-strong noisy instances, and weak noisy instances are given below:

• Strong noisy instance: an instance was considered as a ‘‘strong noisy instance’’ if all five base classifiers classified
it incorrectly. This instance should be removed from the dataset as an ensured class noisy sample [3].

• Semi-strong noisy instance: an instance was considered as a ‘‘semi-strong noisy instance’’ if only one algorithm
classified it correctly. This kind of instances should be removed from the dataset as they are very likely to be potential
noisy instances.

• Weak noisy instance: If only two classifiers predicted the label of instance correctly, the instance was considered
as ‘‘weak noisy instance’’. Since the difference between the numbers of classifiers which can classify the instance
correctly in comparison with the number of classifiers that predict it incorrectly was only one classifier, this kind of
instances cannot be considered as noisy instances to be removed with confidence. Thus, instead of removing a weak
noisy instance, it should rather be relabeled.

More information on these three types of class noise is given in Fig. 1.
If there are L individual algorithms, the lower bound of [L/2] + 1 represents the amounts of individual classifiers

that predict the label of a given sample as a False label and the lower bound of [L/2] represents the number of base
classifiers that classify a given sample with a True label. If the ground truth label of the predicted sample is True, then
we can assume it is very likely that one of the individual algorithms which assigns the False label to the sample, classifies
it incorrectly. Because the difference between the numbers of classifiers that misclassify the sample, compared to the
number of classifiers that are able to predict the correct class is only one algorithm, we cannot be sure that the detected
noisy sample is an inherent class noise sample. The main idea of our method arises from this slight difference between
the two groups of classifiers allowing us to relabel a given sample as a weak noisy sample.

To prove whether our assumption is plausible or not, the STD, AUC, and ROC evaluation metrics were considered.
Our assumption would be true if the output results in terms of these criteria would be better for our new method,
i.e., HAVF using mixed strategy. Algorithm 3 and Fig. 2 depict the algorithm and the block diagram of the proposed
method. Moreover, the following equations were considered:

l∑
i=1

δ (Ai (X)) > L (4)

l∑
i=1

δ (Ai (X)) ≤ (L − l + 1) (5)

l∑
i=1

δ (Ai (X)) = (L − l + 2), (6)
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where Eq. (4) is the condition used to remove strong noisy samples, Eq. (5) is the condition used to remove semi-strong
noisy samples, and Eq. (6) is the condition used to remove weak noisy samples.

To show the positive impact of using mixed strategy on noise detection, we have conducted a simulation study using
four ensemble-based voting methods: 1- MF using removing strategy, 2- HAVF using mixed strategy, 3- HAVF using
removing strategy, and 4- CF using removing strategy. The obtained results are presented in Section 4.2.

4. Experimental validation

Our simulation experiments included two main steps: pre-processing and classification. Pre-processing included noise
detection as well as sample removal and relabeling by MF, HAVF using mixed strategy, HAVF using removing strategy,
and CF using removing strategy. In the classification step, 90% of the pre-processed samples were randomly selected
for training and 10% for testing. The applied ensemble classifiers used k-fold cross validation, in which k was set to 10.
Next, the classification was carried out using bagging. Five base classifiers mentioned in Section 3.1 were used and their
performance assessed for each test set. In this study, the MATLAB program was used for all implementations.
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Fig. 2. Block diagram of the proposed methodology.

4.1. Experimental setup

In this paper, 16 benchmark datasets from the UCI machine learning repository have been used. All of them include
instances that belong to two classes. The main characteristics of these 16 datasets are presented in Table 1. Moreover, in
Table 2, we present the acronyms used for these datasets as well as for the main methods considered in our work. The
methods under study were applied to these 16 datasets containing numerical types of data.

4.2. Performance analysis

After detecting, removing/relabeling the noisy instances using the four mentioned methods, the performance of each of
them has been assessed. To evaluate the performance of each noise detection method, the accuracy, specificity, sensitivity,
STD, AUC, and ROC metrics have been calculated for validation sets of all datasets by Bagging classifier.
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Table 1
Main characteristics of the 16 real datasets from the UCI repository considered in this work.
The real names of datasets # of instances # of features # of training instances # of testing instances # of classes

Parkinson 195 22 176 19 2
Brest cancer Wisconsin diagnostic 569 32 513 56 2
Ion sphere 351 34 316 35 2
Hepatitis 138 18 125 13 2
Vertebral columns 310 7 31 279 2
Connectionist Bench (Sonar, Mines vs. Rocks) 208 60 188 20 2
Statlog (Australian Credit Approval) 690 14 621 69 2
Mammographic 830 6 747 83 2
Statlog (Heart) 270 13 243 27 2
Congressional Voting 435 16 392 43 2
Haberman Survival 306 3 276 30 2
Blood Transfusion 748 4 674 74 2
Pima Indian Diabetes 768 8 692 76 2
Diabetic Retinopathy 1151 19 1036 115 2
Blogger 100 5 90 10 2
Tic-Tac-Toe 958 9 862 96 2

Table 2
The acronyms of datasets and methods considered in this work.
Full name Acronym

Parkinson Prk
Brest cancer Wisconsin diagnostic BCWD
Ion sphere Ion
Hepatitis Hpt
Vertebral column Vrtbc
Connectionist Bench (Sonar, Mines vs. Rocks) Sonar
Statlog (Australian Credit Approval) SAC
Mammographic Mass Mamo
Statlog (Heart) SHrt
Congressional Voting Vot
Haberman Survival Hbrs
Blood Transfusion Bldt
Pima Indian Diabetes Pdib
Diabetic Retinopathy Dibt
Tic-Tac-Toe TTT
Blogger Blgr
Support Vector Machine SVM
Naïve Bayes NB
Random Forest RF
Decision Tree DT
K Nearest Neighbor KNN
High Agreement Voting Filtering using mixed strategy Proposed method
High Agreement Voting Filtering using removing strategy HAVF
Majority Filtering MF
Consensus Filtering CF
University of California, Irvine UCI
Standard Deviation STD
Accuracy Acc
Area Under the Curve AUC
Receiver Operating Characteristics ROC
True Positive TP
True Negative TN
False Negative FN
False Positive FP

4.2.1. Performance measures
Accuracy, sensitivity, specificity, AUC, STD, and Receiver Operating Characteristic (ROC) metrics are frequently applied

in machine learning as measurement criteria based on the consideration that a test sample could be either a false positive
(FP), or a false negative (FN), or a true positive (TP), or a true negative (TN). If the system classifies the test sample into
a positive class, while it is negative, it is called FP. If the system labels it as a negative, but it is positive, it is known as
FN. Moreover, if the classifier predicts the label of the positive and negative test samples correctly, they are named TP
and TN, respectively [41]. The confusion matrix [42] is used to evaluate the performance of the applied voting methods
more accurately. To assess the obtained results of the four filtering methods, the accuracy, sensitivity and specificity were
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computed using the confusion matrix [43] and Eqs. (7), (8), and (9), respectively.

Accuracy = (TP + TN)/(TP + TN + FN + FP), (7)

Sensitivity = (TP)/(TP + FN), (8)

Specificity = (TN)/(TN + FP). (9)

4.2.2. The effects of the methods on each dataset
As mentioned before, our new method can remove less data using relabeling strategy compared to the other methods,

as clearly shown in Table 3. The results presented in Table 3 confirm that the proposed method tends to maintain more
correct instances. According to Table 3, the number of removed noisy instances by our method is lower than that removed
by MF and higher than that removed by CF for all considered datasets and both noise levels. Keeping more correct instances
in the dataset can be considered as the main advantage of our method, while a higher number of remaining instances
ensured by CF confirms its inability to recognize mislabeled instances. Although the correct instances identified by our new
method and by HAVF are the same, the evaluation results present a significant advantage of the new method consisting
of relabeling mislabeled data.

4.3. Results provided by the filtering methods

In this section, the results in terms of the accuracy, sensitivity, specificity, STD, and AUC criteria, obtained for the 16
considered datasets are assessed after carrying out the four specified filtering methods used to detect, remove or relabel
mislabeled data for two-class noisy datasets. We first present the results obtained for data with 10% of noisy class labels,
followed by those obtained for 15% of noisy class labels. The results are reported in Tables 4–8.

4.3.1. Comparison of the accuracy results
The accuracies achieved by each of the four filtering methods have been compared for both considered noise values

(i.e., 10% and 15% of noisy samples). These accuracy results are reported in Table 4. The best obtained accuracies are
highlighted in bold.

• Accuracy results for 10% of class noise
On one hand, Table 4 shows that the proposed method provides better accuracy than MF for 11 datasets. Moreover, it is

worth noting that after applying the proposed method, HAVF using relabeling strategy, the obtained accuracy per dataset is
greater than the accuracy achieved in the case of using both HAVF and CF. On the other hand, Table 4 indicates that MF was
able to provide better accuracy than the proposed method only for 5 of 16 datasets. Furthermore, MF provided a greater
accuracy value compared to HAVF and CF for 9 and 16 datasets, respectively. Table 4 also shows that the performance of
HAVF is superior compared to CF for all datasets. CF was the worst method overall when the data with 10% of class noise
were investigated.

• Accuracy results for 15% of class noise
Table 4 shows that the proposed method was able to provide achieve a higher accuracy value than MF for 9 of 16

datasets. Furthermore, we can observe that by applying the proposed method we were able to get better results than
HAVF for 15 datasets. Noteworthy, the proposed method had a better performance compared to CF for all 16 datasets.

We were able to obtain better accuracy values for 9 datasets when MF was used compared to HAVF. Finally, the
application of MF allowed us to gain better accuracy values than CF for all 16 datasets. It can be also seen in Table 4 that
HAVF has a higher performance than CF for all 16 datasets. The order of methods concerning noise detection remained
the same as for 10% of class noise. Thus, overall, the proposed method was still the best one and CF was still the worst
one.

4.3.2. Comparison of the sensitivity results
The sensitivities achieved by each of the four filtering methods have been compared for both considered noise values

(i.e., 10% and 15% of noisy samples). These sensitivity results are reported in Table 5. The best obtained sensitivities are
highlighted in bold.

• Sensitivity results for 10% of class noise
Table 5 shows the results that for 10% of class noise the proposed method generates better sensitivities than MF and CF

for 11 and 13 datasets (out of 16), respectively. Moreover, the proposed method yields greater sensitivities for 11 datasets
compared to HAVF. Based on the sensitivity criterion, MF has a better performance for only 6 datasets when compared
to HAVF, which has superiority over MF on 10 datasets. HAVF was able to generate better sensitivities than CF for all
datasets except for TTT. CF was able to provide a higher sensitivity value only for one dataset.

• Sensitivity results for 15% of class noise
For this type of noise condition, the proposed method was able to achieve greater sensitivities, compared to MF, for

9 datasets, and for 13 datasets compared to HAVF. Table 5 also shows that CF has no superiority over the other methods
except for the TTT dataset. MF provided greater sensitivities compared to HAVF and CF for 10 and 15 datasets, respectively.
Furthermore, HAVF achieved better sensitivities in comparison with the proposed method only for 3 datasets. In addition,
HAVF yielded better sensitivities for 6 and 15 datasets, compared to MF and CF, respectively.
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Table 3
This table presents the data used in our simulation study. Noise level — indicates two levels of the added class noise, Weak — indicates the number
of relabeled weak noisy samples, SNE — indicates the number of strong and semi-strong noisy samples detected and removed by HAVF and by our
new method, Remain — indicates the number of correct samples remained after identifying and removing noisy samples, NE — indicates the number
of noisy samples detected by MF and CF, Proposed method — is the HAVF method using relabeling strategy, and HAVF — is the HAVF method using
removing strategy.

Dataset Noise level Proposed method MF HAVF CF

Weak # SNE Remain # NE Remain # SNE Remain # NE Remain

Prk 10% 10 29 166 33 162 29 166 8 187
15% 16 33 162 36 159 33 162 11 184

BCWD 10% 24 50 519 76 493 24 519 17 552
15% 23 78 491 101 468 78 491 29 540

Ion 10% 16 40 311 58 293 40 311 18 333
15% 13 47 304 58 293 47 304 18 333

Hpt 10% 16 28 110 43 95 38 100 3 135
15% 20 38 100 64 74 100 38 10 128

Vrtbc 10% 28 34 276 40 270 34 276 15 295
15% 25 59 251 63 247 59 251 39 271

Sonar 10% 23 29 179 39 169 29 179 7 201
15% 21 31 177 51 157 31 177 9 199

Sac 10% 71 77 613 103 587 71 613 17 673
15% 64 118 572 143 547 118 572 39 651

Mamo 10% 68 152 678 173 657 152 678 58 772
15% 75 169 661 261 569 169 661 79 751

SHrt 10% 26 48 222 72 198 48 222 6 264
15% 36 49 221 93 177 49 221 14 256

Vot 10% 18 50 385 67 368 50 385 29 406
15% 17 67 368 85 350 67 368 48 387

Hbrs 10% 30 76 230 88 218 76 230 31 275
15% 32 76 230 98 208 76 230 36 270

Bldt 10% 73 159 589 253 531 159 589 47 701
15% 40 172 576 231 517 172 576 80 668

Pima 10% 97 142 626 230 538 142 626 58 710
15% 118 128 620 243 505 128 620 47 701

Diabetes 10% 190 251 900 438 713 251 900 92 1059
15% 204 251 900 469 682 251 900 92 1059

Blogger 10% 4 19 81 23 77 19 81 13 87
15% 11 25 75 34 66 25 75 16 84

TTT 10% 212 104 854 309 649 104 854 62 896
15% 150 176 782 324 634 176 782 93 865

Table 4
Results obtained for the accuracy criterion.

Datasets 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

Prk 0.9313 0.9063 0.9231 0.8394 0.8969 0.8647 0.8825 0.7911
BCWD 0.9567 0.9761 0.9488 0.8942 0.9502 0.9570 0.9402 0.8604
Ion 0.9535 0.9353 0.9452 0.8730 0.9420 0.9207 0.9253 0.8324
Hpt 0.8627 0.8422 0.8427 0.6823 0.8350 0.8200 0.8220 0.6192
Vrtbc 0.9230 0.8819 0.9130 0.8690 0.9284 0.8825 0.8967 0.8463
Sonar 0.8812 0.8419 0.8256 0.7705 0.8624 0.8567 0.8253 0.7642
SAC 0.9107 0.8991 0.8985 0.8261 0.9242 0.8907 0.8982 0.7986
Mamo 0.9215 0.8032 0.9200 0.7971 0.9120 0.9686 0.9241 0.8179
SHrt 0.8809 0.9395 0.8655 0.7476 0.8500 0.9224 0.8450 0.7240
Vot 0.9771 0.9828 0.9700 0.9100 0.9706 0.9774 0.9642 0.9195
Hbrs 0.8735 0.8357 0.8639 0.7333 0.8939 0.8540 0.8878 0.7404
Bldt 0.9769 0.9592 0.9281 0.7611 0.9279 0.9514 0.9144 0.7805
Pima 0.8819 0.9242 0.8573 0.7603 0.8569 0.9198 0.8435 0.7511
Diabetes 0.8121 0.8780 0.8010 0.6944 0.7978 0.8874 0.7833 0.6849
Blogger 0.9688 0.7290 0.9550 0.7087 0.9700 0.9367 0.9429 0.9038
TTT 0.9489 0.9392 0.9261 0.9175 0.9319 0.9249 0.8909 0.8734
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Table 5
Results obtained for the sensitivity criterion.

Datasets 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

Prk 0.8469 0.7119 0.7048 0.6384 0.6773 0.5945 0.6116 0.5303
BCWD 0.9784 0.9857 0.9738 0.9313 0.9502 0.9570 0.9402 0.8604
Ion 0.9631 0.9436 0.9679 0.9269 0.9586 0.9433 0.9425 0.8861
Hpt 0.9071 0.8636 0.8856 0.74730 0.84 0.7539 0.8059 0.6208
Vrtbc 0.9631 0.9440 0.9505 0.9317 0.9489 0.9281 0.9339 0.8764
Sonar 0.7634 0.7054 0.7084 0.6599 0.8671 0.8239 0.8075 0.7270
SAC 0.8902 0.8749 0.8793 0.7980 0.8836 0.8525 0.8775 0.7469
Mamo 0.9168 0.8067 0.9290 0.8209 0.8897 0.9575 0.9252 0.8017
SHrt 0.9041 0.8894 0.9544 0.7712 0.8989 0.9289 0.8968 0.7881
Vot 0.9766 0.9841 0.9816 0.9101 0.9595 0.9789 0.9601 0.9204
Hbrs 0.9472 0.9358 0.9401 0.8547 0.9691 0.9578 0.9600 0.8698
Bldt 0.8960 0.8395 0.7209 0.3645 0.7530 0.7945 0.7117 0.4732
Pima 0.7848 0.8629 0.7473 0.6179 0.6830 0.8061 0.6796 0.5757
Diabetes 0.8510 0.9025 0.8126 0.7048 0.8673 0.9346 0.8419 0.7450
Blogger 1 0.8432 0.9757 0.8350 0.9847 0.9760 0.9691 0.9306
TTT 0.1832 0.2766 0.8618 0.8735 0.1320 0.0966 0.6894 0.7602

Table 6
Results obtained for the specificity criterion.

Datasets 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

Prk 0.9826 0.9778 0.9791 0.9282 0.9669 0.9583 0.9605 0.8961
BCWD 0.9211 0.96 0.9108 0.8337 0.9601 0.9223 0.8937 0.7721
Ion 0.9473 0.9206 0.9123 0.7882 0.9184 0.8867 0.8930 0.7561
Hpt 0.8057 0.7811 0.7800 0.6041 0.8422 0.5644 0.8410 0.0605
Vrtbc 0.8359 0.7315 0.8236 0.7315 0.8818 0.7926 0.8219 0.7893
Sonar 0.9574 0.9446 0.9117 0.8599 0.8562 0.8933 0.8488 0.8035
SAC 0.9293 0.9144 0.9152 0.8530 0.9611 0.9207 0.9145 0.8368
Mamo 0.9278 0.8017 0.9213 0.7742 0.9294 0.9756 0.9236 0.8316
SHrt 0.8574 0.9206 0.8390 0.7281 0.7761 0.8971 0.7790 0.6598
Vot 0.9774 0.9822 0.9753 0.9143 0.9902 0.9768 0.9690 0.9224
Hbrs 0.5607 0.4551 0.5292 0.3901 0.5250 0.2272 0.5298 0.3558
Bldt 0.9914 0.9735 0.9749 0.9056 0.9697 0.9789 0.9600 0.8926
Pima 0.9318 0.9542 0.9113 0.8426 0.9325 0.9661 0.9227 0.8527
Diabetes 0.7666 0.8483 0.7890 0.6855 0.6683 0.8014 0.6877 0.6039
Blogger 0.8148 0.3591 0.7424 0.4237 0.7649 0.4570 0.6216 0.7049
TTT 0.8574 0.9206 0.8390 0.7281 0.9983 0.9969 0.9540 0.9244

4.3.3. Comparison of the specificity results
The specificities achieved by each of the four filtering methods have been compared for both considered noise values

(i.e., 10% and 15% of noisy samples). These specificity results are reported in Table 6. The best obtained specificities are
highlighted in bold.

• Specificity results for 10% of class noise
As reported in Table 6 the proposed method enabled us to achieve better specificities for 10 datasets (out of 16) in

comparison with MF. Based on the specificity criterion, our new method has a better performance than HAVF and CF
for 14 and 15 datasets, respectively. Clearly, CF was the worst method in terms of the specificity criterion for 10% of
class noise data. As can be seen in Table 6, we can achieve better specificities for 9 datasets when MF is used, compared
to HAVF.HAVF using removing strategy generated a better specificity value compared to our new method only for one
dataset.

• Specificity results for 15% of class noise
Table 6 reports that greater specificities were obtained by our method for 10 datasets compared to MF when the data

with 15% of class noise were used. The proposed method enabled us to get better specificities for 13 datasets compared
to HAVF. It is worth noting that CF was never able to achieve a better specificity result compared to the other methods.
As presented in Table 6, higher specificities were obtained for 6 datasets using MF, compared to the proposed method.
Moreover, MF showed a better performance than HAVF for 10 datasets.

4.3.4. Comparison of the STD results
The STD values provided by each of the four filtering methods have been compared for both considered noise values

(i.e., 10% and 15% of noisy samples). These STD results are reported in Table 7. The best obtained STD values are highlighted
in bold.
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Table 7
Results obtained for the STD criterion.

Datasets 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

Prk 0.0072 0.0092 0.0106 0.0180 0.0079 0.0110 0.0184 0.0158
BCWD 0.0048 0.0019 0.0035 0.0049 0.0040 0.0017 0.0046 0.0069
Ion 0.0038 0.0057 0.0061 0.0085 0.0052 0.0061 0.0063 0.0067
Hpt 0.0151 0.0202 0.0210 0.0159 0.0118 0.0228 0.0181 0.0239
Vrtbc 0.0080 0.0081 0.0093 0.0083 0.0076 0.0058 0.0129 0.0141
Sonar 0.0110 0.0202 0.0139 0.0123 0.0084 0.0173 0.0104 0.0193
SAC 0.0055 0.0021 0.0022 0.0050 0.0036 0.0052 0.0048 0.0037
Mamo 0.0060 0.0069 0.0061 0.0062 0.0044 0.0024 0.0048 0.0045
SHrt 0.0151 0.0100 0.0094 0.0118 0.0127 0.0104 0.0081 0.0209
Vot 0.0033 0.0039 0.0037 0.0065 0.0033 0.0044 0.0031 0.0053
Hbrs 0.0063 0.0098 0.0041 0.0153 0.0075 0.0099 0.0142 0.0118
Bldt 0.0034 0.0031 0.0060 0.0030 0.0039 0.0040 0.0055 0.0095
Pima 0.0072 0.0064 0.0058 0.0050 0.0042 0.0039 0.0095 0.0060
Diabetes 0.0061 0.0044 0.0048 0.0088 0.0060 0.0056 0.0059 0.0094
Blogger 0.0066 0.0268 0.0230 0.0306 0.0171 0.0205 0.0223 0.119
TTT 0.0019 0.0056 0.0020 0.0037 0.0020 0.0021 0.0065 0.0057

Table 8
Results obtained for the AUC criterion.

Datasets 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

Prk 0.8958 0.8167 0.8451 0.7359 0.8126 0.7690 0.7935 0.6876
BCWD 0.9433 0.9739 0.9341 0.8841 0.9449 0.9567 0.9349 0.8506
Ion 0.9573 0.9337 0.9447 0.8496 0.9399 0.9191 0.9122 0.8068
Hpt 0.8580 0.8435 0.8282 0.6447 0.8769 0.8542 0.8502 0.6573
Vrtbc 0.8925 0.8650 0.8934 0.8375 0.9104 0.8489 0.8989 0.6643
Sonar 0.8590 0.8073 0.8254 0.7900 0.9016 0.8551 0.8235 0.7897
SAC 0.9059 0.8920 0.8990 0.8244 0.9273 0.8850 0.8942 0.7884
Mamo 0.9207 0.8109 0.9194 0.7914 0.9169 0.9613 0.9274 0.8177
SHrt 0.8938 0.9300 0.8720 0.7506 0.8730 0.9031 0.8219 0.7173
Vot 0.9832 0.9634 0.9757 0.9110 0.9721 0.9144 0.9693 0.9040
Hbrs 0.7717 0.7300 0.7293 0.6007 0.6643 0.6426 0.7184 0.6114
Bldt 0.8026 0.8649 0.9263 0.6202 0.8509 0.8909 0.8482 0.6947
Pima 0.8646 0.9029 0.8386 0.7255 0.8219 0.8826 0.8063 0.7060
Diabetes 0.8168 0.8830 0.8032 0.6874 0.7629 0.8775 0.7577 0.6738
Blogger 0.9773 0.6156 0.9417 0.6470 0.9912 0.8235 0.8994 0.8538
TTT 0.5543 0.9112 0.6471 0.9305 0.5100 0.5678 0.8241 0.8212

• STD results for 10% of class noise
Based on the STD criterion, our new method had a better performance for 10 datasets (out of 16) when it was compared

to HAVF on the data with 10% of class noise. The proposed method outperformed MF on 10 datasets. Moreover, on 12
datasets the proposed method also outperformed CF. Based on the STD criterion, MF showed a better performance for 9
datasets when compared to HAVF. The use of MF allowed us to obtain greater STD values than CF for 10 datasets. The
application of HAVF led to better STD results for 11 datasets in comparison with CF. Finally, CF provided better STD results
than MF for 7 datasets.

• STD results for 15% of class noise
As reported in Table 7, the proposed method provided better performance for 10 datasets in comparison with MF

when the data with 15% of class noise were used. The proposed method also generated better STD results for 13 datasets
in comparison with HAVF. Moreover, the application of the proposed method resulted in better STD values for all 16
datasets in comparison with CF. As can be seen in Table 7, the application of MF allowed us to get better STD values for
11 datasets in comparison with HAVF. Finally, MF showed a better performance for 15 datasets in comparison with CF,
and HAVF allowed us to generate better results for 10 datasets when compared to CF.

4.3.5. Comparison of the AUC results
The AUC values provided by each of the four filtering methods have been compared for both considered noise values

(i.e., 10% and 15% of noisy samples). These AUC results are reported in Table 8. The best obtained AUC values are
highlighted in bold.

• AUC results for 10% of class noise
As reported in Table 8, the proposed method was able to generate better AUC results for 13 datasets (out of 16) when

compared to HAVF for the data with 10% of class noise. The proposed method also provided better AUC results for 10
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datasets in comparison with MF. Finally, CF was superior to the proposed method for only one dataset. Moreover, MF
provided better AUC results for 7 datasets in comparison with HAVF. Finally, MF generated better AUC values for 14
datasets in comparison with CF, and HAVF outperformed CF for 14 datasets.

• AUC results for 15% of class noise
For this type of noise condition, the proposed method outperformed MF on 9 datasets in terms of AUC. Our new method

provided better performance than HAVF for 13 datasets, and than CF for 15 datasets. MF had a better performance than
HAVF for 9 datasets, and MF provided greater AUC values compared to CF for 14 datasets. Finally, the HAVF method
outperformed CF on all 16 datasets considered in this study.

4.3.6. Comparison of the ROC results
The area under the curve (AUC) summarizes the location of the ROC. The AUC is a mixed measure of sensitivity and

specificity explaining the inherent validity of diagnostic tests.
The maximum value of AUC = 1 means that the performed test is perfectly suited for the differentiation between two

different class labels. This happens when the distributions of the test results for the two classes do not overlap. Moreover,
the value of AUC = 0.5 refers to the curve located on the diagonal line of the ROC space, showing a certain chance for
discrimination. However, the case when AUC = 0 reveals the fact that the test results are incorrectly categorized [44].

The ROC curves for all the 16 benchmark datasets considered in our study were determined for the four mentioned
noise filtering methods. The ROC curves obtained after detecting, removing and relabeling noisy data using the four noise
filtering methods for 10% class noise are illustrated in Figs. 3a, 3b, 3c, and 3d. Likewise, to compare the performance of
each noise filtering method for 15% class of noise, the corresponding ROC curves were depicted in Figs. 4a, 4b, 4c, 4d. For
a better understanding of the relationship between the ROC curves and the performance of each method, we refer the
reader to the results reported for the AUC criterion. As known, there is a direct relationship between the AUC value and
the ROC performance. The higher the AUC value, the better the ROC performance. In case of adding 10% of noise labels
(see Figs. 3a, 3b, 3c, and 3d) the proposed method provided the best results for 9 of 16 benchmark datasets. MF generated
the most accurate ROC results for 5 datasets and HAVF for 2 datasets. As shown in Figs. 4a, 4b, 4c, and 4d regarding 15%
of class noise, the proposed method allowed us to achieve the most accurate ROC results for 8 datasets, MF for 6 datasets,
and HAVF for 2 datasets. CF fails to achieve the most accurate result on any dataset.

5. Discussion

In Section 5.1, we first provide an example of the recognition of mislabeled data. Thereafter, in Section 5.2, we
review and compare the performance of our new method with those of existing approaches. Finally, the advantages and
weaknesses of the proposed method, as well as those of MF, CF, and HAVF, are discussed in Section 5.3.

5.1. Visualizing noisy data

For more clarity, we present a visualization of correct original samples of the Vrtbc dataset in Fig. 5. Then, we illustrate
the noisy samples added to it (shown by green arrows in Fig. 6; here 10% of class noise was added). The weak noisy samples
which are identified and relabeled by our new method are shown by green arrows in Fig. 7.

5.2. Comparison with existing methods

Several researchers who proposed new noise detection methods have assessed their performance using benchmark
data. To show the effectiveness of the proposed method, we compared our accuracy results with those provided by the
existing approaches (see Table 9). Table 9 reports the best accuracies obtained for 10 real datasets by the proposed method
and the existing approaches. The results presented in this table reveal that the proposed method provided the highest
accuracy in the majority of cases in the presence of 10% of noise. The only case where the existing approach outperformed
our new method was in the case of the BCWD dataset for which CF1 [4] and MF_MF [30] were the best performers.

5.3. Comparison of the best results provided by the four compared noise filtering methods

The number of datasets in which each noise filter method provides the best result was reported in Table 10 for both
noise levels, 10% and 15%. The experimental criteria used for evaluation were: accuracy, sensitivity, specificity, STD, and
AUC. Observing the results indicated in Table 10, we can conclude that, based on the five selected evaluation criteria, the
proposed method is the most accurate one with 10% of noisy samples. MF, HAVF, and CF got the second, third, and fourth
place, respectively. The results obtained for 15% of class noise reveal that the proposed method is still the best one, while
CF remains the worst one. It is worth noting that MF usually provided better results for data with 15% of class noise than
for data with 10% of class noise.

• Advantages and weaknesses of each filtering method
As discussed in Section 4, the proposed method is the most accurate one compared to MF, CF, and HAVF, based on the

selected evaluation criteria, namely, accuracy, sensitivity, specificity, STD, AUC, and ROC. One of the main advantages of
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Fig. 3a. ROC curves for 10% of added noise.
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Fig. 3b. ROC curves for 10% of added noise.
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Fig. 3c. ROC curves for 10% of added noise.
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Fig. 3d. ROC curves for 10% of added noise.
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Fig. 4a. ROC curves for 15% of added noise.
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Fig. 4b. ROC curves for 15% of added noise.
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Fig. 4c. ROC curves for 15% of added noise.
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Fig. 4d. ROC curves for 15% of added noise.
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Fig. 5. Visualizing the distribution of the original samples of the Vrtbc dataset.

Fig. 6. Visualizing the distribution of the original and noisy samples (see the green arrows) of the Vrtbc dataset.
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Fig. 7. Visualizing the original and recognized weak noisy samples (see the green arrows) of the Vrtbc dataset.

the proposed method is its ability to keep some regular data in the dataset using relabeling. For example, these data are
frequently incorrectly detected and removed as noisy by MF. As reported in Table 3, the number of samples identified and
removed as noisy using the proposed method is close to the actual number of noisy samples (for datasets with both 10%
and 15% of noise). The MF method usually overestimates the level of class noise and incorrectly detects some non-noise
samples as noise. Removing many correct instances can be very harmful especially when the dataset contains a low
amount of samples. Although CF removes fewer samples from the data, it has difficulty to detect real noisy instances.

5.4. Future work directions

There are some future work directions that could be pursued to deal with the disadvantages of the proposed method.
As mentioned earlier, we applied our model to binary classification data. However, in the future, we plan to modify it
and apply it to the data containing more than two classes. We will explore the data coming from the following popular
areas: health care [48–53], business planning [54], intelligent information technology (IT) [55], laser induced breakdown
spectroscopy (LIBS) [56], etc.

6. Conclusions

This paper describes a new filtering method, High Agreement Voting Filtering (HAVF) using mixed strategy, to deal
with the data misclassification problem. Our method applies a mixed strategy that consists of removing and relabeling
noisy instances in order to improve the performance of the MF and CF methods through preventing regular data removal.
A comprehensive simulation study has been carried out to compare the performances of four noise detection methods
discussed in this paper. Our new method is able to identify the mislabeled instances (strong noisy and semi-strong noisy
instances) that are likely to be noisy and correct the instances that are less likely to be noisy instances (weak noisy
data). Thus, weak noisy data could be re-categorized instead of being removed. The mixed strategy has been applied to
prevent the wrong removal of many regular instances incorrectly. Our experiments, conducted on 16 well-known datasets,
showed the superiority of the proposed method over the existing approaches. To conduct our comparison, we used the
following evaluation metrics: accuracy, specificity, sensitivity, STD, and AUC, which have been assessed using bagging
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Table 9
The comparison of the proposed method with the existing approaches in terms of the accuracy.
Datasets Study Method Accuracy

Dataset 1: Prk
Donghai Guan et al. (2014) [4] MFMF 0.7900
Saba Bashir et al. (2016) [31] k-means clustering 0.8923
This paper Proposed method 0.9313

Dataset 2: Ion

Donghai Guan et al. (2013) [30] CF_MF 0.811
Joaquín Abellán et al. (2012) [45] B-CDT 0.9135
Piyasak Jeatrakul (2012) [46] CMTNN cleaningtechnique II 0.92
XI-ZHAO WANG et al. (2008) [47] NR-MCS 0.9142
Chaoqun Li et al. (2016) [12] IPF 0.8687
This paper Proposed method 0.9535

Dataset 3: BCWD

Donghai guan et al. (2014) [4] CF1 0.971
Donghai guan et al. (2013) [30] MF_MF 0.971
Saba Bashir et al. (2016) [31] k-means clustering 0.9671
This paper Proposed method 0.9567

Dataset 4: Sonar

Donghai guan et al. (2013) [30] CF_MF 0.752
Chaoqun Li et al. (2016) [12] IPF 0.6257
Joaquín Abellán et al. (2012) [45] B-CDT 0.7699
This paper Proposed method 0.8812

Dataset 5: SHrt

Donghai Guan et al. (2014) [4] MFMF 0.823
Saba Bashir et al. (2016) [31] k-means clustering 0.8449
Chaoqun Li et al. (2016) [12] IPF 0.763
This paper Proposed method 0.8809

Dataset 6: Pdib

Saba Bashir et al. (2016) [31] k-means clustering 0.7708
Joaquín Abellán et al. (2012) [45] B-CDT 0.7584
XI-ZHAO WANG et al. [47] NR-MCS 0.7114
Piyasak Jeatrakul (2012) [46] CMTNN cleaningtechnique II 0.7662
This paper Proposed method 0.8819

Dataset 7: Hpt

Saba Bashir et al. (2016) [31] k-means clustering Classifier -DT-IG0.8129
Joaquín Abellán et al. (2012) [45] B-CDT 0.8264
Chaoqun Li et al. (2016) [12] IPF 0.6257
This paper Proposed method 0.8627

Dataset 8: Vot Joaquín Abellán et al. (2012) [45] B-CDT 0.9556
This paper Proposed method 0.9771

Dataset 9: Hbrs XI-ZHAO WANG et al. [47] NR-MCS 0.7464
This paper Proposed method 0.8738

Dataset 10: Diabetes
Donghai Guan et al. (2014) [4] MFMF 0.7850
Donghai Guan et al. (2014) [4] CF1 0.7780
This paper Proposed method 0.8121

Table 10
Number of times (out of 16) when each of the methods compared (Proposed method, MF, HAVF, and CF) provided the best result according to a
specific evaluation criterion (accuracy, sensitivity, specificity, STD, and AUC).

Ranking in terms of criteria 10% of noise 15% of noise

Proposed method MF HAVF CF Proposed method MF HAVF CF

The best Accuracy 11 5 0 0 9 7 0 0
The best Sensitivity 8 4 3 1 8 7 0 1
The best Specificity 10 6 0 0 9 6 1 0
The best STD 9 4 1 2 9 5 2 0
The best AUC 9 4 2 1 8 6 2 0

classification. Our experimental results reveal that the proposed method, HAVF using mixed strategy, outperformed HAVF
using removing strategy in the presence of 10% of noise for 16, 15, 11, 10, and 13 (out of 16 in all cases) datasets according
to the accuracy, specificity, sensitivity, STD and AUC criteria, respectively. Likewise, the proposed method outperformed
MF according to the accuracy, specificity, sensitivity, STD and AUC criteria, for 11, 10, 11, 10, and 10 datasets, respectively
in the presence of 10% of noise. Experimental results also show that CF is the weakest of all the methods compared.
Clearly, CF remains a better method for datasets in which significant mislabeling occurs. Likewise, in the case of 15%
noise data, the proposed method outperformed MF for 9, 10, 9, 10, and 9 datasets according to the accuracy, specificity,
sensitivity, STD, and AUC criteria, respectively. Moreover, the proposed method provided the best results for 13 datasets
for all metrics, including the accuracy, specificity, sensitivity, STD, and AUC, in comparison with HAVF using data removal
strategy. The proposed method was also superior to MF even in the presence of 15% of noise data. However, the number
of datasets for which our new method was able to generate the best results decreased compared to the case of 15% of
noise data. Although the performance of the proposed method slightly decreases as the class noise level increases, the



M. Samami, E. Akbari, M. Abdar et al. / Physica A 553 (2020) 124219 27

HAVF approach with mixed strategy provides very promising results by preventing many regular instances from being
removed from original data.
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