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Abstract. Cyber-attack detection has become a basic component of
all information processing systems, and once an attack is detected it
may be possible to block or mitigate the effect of the attack. This paper
addresses the use of a learning recurrent Random Neural Network (RNN)
to build a lightweight detector for certain types of Botnet attacks on IoT
systems. Its low computational cost based on a small 12-neuron recurrent
architecture makes it particularly attractive for edge devices. The RNN
can be trained off-line using a fast simplified gradient descent algorithm,
and we show that it can lead to high detection rates of the order of 96%,
with false alarm rates of a few percent.
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1 Introduction

Cyberattacks are increasingly common, sophisticated and malignant,
while we constantly increase our reliance on Internet connected devices
in almost every area of life: smart homes, cities, health monitoring, in-
dustry, military, agriculture etc. Also, the rapid increase in the number
of TIoT devices, their functionality and connectivity, has introduced ad-
ditional security threats |11] because such simple devices are more prone
to vulnerabilities that can lead to data theft, power supply drainage [31],
and compromizes that lead to their use in Botnets for Distributed Denial
of Service (DDos) attacks [34].

Since they are often Internet accessible and interconnected for machine-
to-machine (M2M) communications, IoT devices are a natural “doorway”
for attackers, and the use of wireless communications also increases their
vulnerability [36].

IoT devices are often embedded with microcontrollers powered by batter-
ies; therefore energy saving is important and complex attack detection
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techniques that require a large amount of computation cannot be in-
stalled on such systems [55|. Thus much work has been done on creating
simple yet accurate intrusion detection techniques for IoT platforms and
evaluating them on representative datasets [?,[10].

Over the years, many different techniques have been used for attack de-
tection. In [39] it is indicated that the major algorithms used in the
last decade for intrusion detection are based on the Artificial Neural
Networks (ANNs), including Deep Learning based approaches that have
gained popularity due to thei ability to extract patterns better than
shallow learning methods despite their need for additional computa-
tional resources [60]. While for some IoT devices security is crucial, for
others energy-efficiency is critical; thus the trade-off between security-
effectiveness and energy-efficiency needs to be considered [36].

Hence we propose a recurrent Random Neural Network (RNN) for light-
weight attack detection which can be trained off-line, creating a small
but effective network that produces satisfactory results with a minimum
of computationally demanding operations, and potentially low energy
consumption. The small size of the RNN leads to less storage space and
energy consumption for storage, as well as to lower computation times
for detection which also save energy. We initialize the network weights in
such a way as to establish the “neutraility” of the network prior to the
learning process for faster and more accurate learning. We also reduce
the number of computationally demanding operations during learning
by fixing the total value of the RNN excitatory and inhibitory weights,
so that only excitatory weights need to be updated with an automatic
effect on the inhibitory weights.

In the sequel, Section [2] discusses the area of Intrusion Detection and
provides a literature overview. In Section [3] we discuss the RNN and
summarize its initialization and the simplified learning algorithm. Section
[ describes our experimental results based on training the RNN with
attack data and testing it using disjoint attack data. Finally we draw
some conclusions and suggest future work.

2 Related Work on CyberAttack Detection

Over the years, many different cyberattack datasets have been created
such as the DARPA datasets |15}|16], the KDDCup’99 datasets [3§|,
and their successors. However, since the time when these datasets were
created more than twenty years ago, attacks have changed and detectors
that were trained with that data have become less reliable [39]. Thus
in recent years, datasets with IoT traffic have been created such as N-
Baiot |49], IoT host-based datasets for IDS research (8], the IoT Network
Intrusion Dataset [46], the BoT-IoT dataset |[47] and MedBIoT [34].

The Bot-IoT dataset was created in the Cyber Range Laboratory of
the University of New South Wales’ Canberra Cyber Center (Australia).
Their testbed consists of network platforms and simulated IoT services.
The network platforms include normal and attacking virtual machines
with additional network devices such as a packet filtering firewall and
Network Interface Cards. The Ostinato software [51] is used to generate
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realistic normal network traffic, and four Kali Linux machines are used
to simulate a set of standard Botnet attacks. The IoT sensors are sim-
ulated and use MQTT, the machine-to machine connectivity protocol,
to transfer messages to a Cloud Service provider (AWS). The MQTT
protocol runs over TCP/IP. The network protocol analyser (tshark) is
used to capture the normal and attack raw data. Packet capturing is
performed with the pcap library. The pcap files that are collected, are
69.3 GB in size and consist of 72 million records.

While in some datasets [8,/46,49| only a very limited range of IoT multi-
media devices are used, the Bot-IoT dataset [47] uses a variety of devices
such as smart lights, a smart thermostat, a weather monitoring station,
smart garage doors and a refrigerator, and it has been used in many
recent papers [9,/18-2035].

In the sequel we will use the Bot-IoT dataset which consists of real and
simulated IoT traffic, and contains three main types of attacks: both DoS
and DDoS attacks, information gathering, and information theft.

2.1 Attack Detection

Many different approaches have been used for attack detection. Signature-
based detection [12,/48] utilizes known patterns of the attacks to detect
abnormal behaviours in the network traffic. This type of detection does
not have a strong generalization power and can be easily bypassed by
novel types of attacks [34].

Anomaly-based detection systems operate by identifying the patterns
that define normal and abnormal traffic, and can be divided into three
main groups: knowledge-based, statistical and Machine Learning (ML)
based. Knowledge-based systems use a set of rules and finite state ma-
chines. Statistically based techniques [4] are typically based on time se-
ries. The ML approaches covers include clustering techniques [59], Ge-
netic Algorithms [56], and ANNs [37] and Deep Learning.

As indicated in [39], the most popular approach in the last decade has
been to use ML based algorithms, especially ANNs that are successful
because of their classification power and their ability to generalize to
datasets for which they have not been specifically trained. A recent trend
is also the increased usage of Deep Learning techniques for IDS |18,20161].
Attack detection aims to identify within a given traffic stream, those
sub-streams that are viewed as being “normal”, and those sub-streams
that are likely to contain various forms of attacks. Typically, a binary
classification into “normal” and “attack” traffic is preferred because of
its simplicity [45]. Indeed, detectors that attempt to seek more detailed
classifications for instance into different types of attacks, tend to be more
error prone, leading to a decrease in classification accuracy [60].

3 The Random Neural Network

The Random Neural Network (RNN) was introduced in [21]. It is a bi-
ologically inspired spiking neural network model, which has a recurrent
structure that incorporates feedback loops. It has been proved to be
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a universal approximator for continuous and bounded functions [27}[28].
Different gradient descent based learning algorithms have been suggested
for the RNN [?,/7].

RNNs have found application in many different fields, including mod-
elling, optimization, image processing, communication systems, pattern
recognition and classification [57]. For instance, they have been used for
combinatorial optimization [23|26]. In [5/6] it has been shown that RNNs
can be utilized to generate textures.

Other applications include the detection of explosive mines [?], medical
image segmentation [24], the detection and classification of vehicles |41],
video compression [13], the evaluation of subjective metrics of user satis-
faction regarding the quality of service in networks [54], and as a detector
of DDOS Attacks |50]. The image texture recognition capability of the
RNN exchibited in [30], was used to accurately insert 3-D images in mov-
ing virtual reality scenes [25/40] and applied to the augmented reality
simulation of transportation systems [42].

The RNN has also been used to evaluate the voice and video quality 32}
53| of multimedia data streams. In smart buildings they have been used
for the dynamic management of energy [2|3] and of heating, ventilation,
airconditioning and cooling systems [43}44].

In the field of communications, RNNs have been used to control the
modulation of downlink traffic in LTE systems [1], to construct adaptive
network routing algorithms [29] in smart networks [17], to design intru-
sion detection in networks [52], and to optimally schedule video sequences
for content delivery [33].

3.1 The Random Neural Network

In this section, we present the notation for the RNN [21]. The RNN with
N neurons is represented by a vector of non-negative integers K (¢) and
by a probability distribution P[K (t) = k]:

K(t) = (K1(t), ... Kn(t)), Ki(t) >0, (1)
p(k,t) = Prob[K(t) = k], where (2)
k= (ki, .. kn), ki >0,

and k is a specific value taken by K (t), where K;(t) represents the exci-
tation level of neuron 4 in the network, and it is non-negative (as already
indicated) and unbounded. Each neuron in a RNN receives ezternal exci-
tatory and inhibitory spikes according to independent Poisson processes
of rate A; > 0 and \;, respectvely.

If K;(t) > 0, neuron i can “fire” or spend a spike after an exponentially
distributed interval of parameter r; > 0, either to some other neuron
j with probability pjj as an excitatory spike, or with probability p;;
as an inhibitory spike. We denote by w;fj = ripi*j and w; ; = 7;p;; the
excitatory and inhibitory outgoing weights of neuron i. The spike leaving
neuron ¢ when it is excited, may also leave the network as a whole with
probability d; > 0 so that d; + Zjvzl[pf] +p;;] = 1 for all neurons i.
When neuron ¢ receives an excitatory spike at time ¢, it state increases
by +1, i.e. K;(tT) = K;(t) + 1. If it receives an inhibitory spike then it
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decreases by one, but only if it was previously positive, i.e. : K;(t") =
maz [0, K;(t) — 1]. The key theoretical result that was proved in [22]
regarding the RNN is as follows:

Theorem Define p(k) = lim; o p(k,t). If:

A+ 30wty
qi = N — < 13 (3)
T + Az + Zj:l q‘jwj’z

It follows that for k = (ki, ... kn)

N
p(k) =4 (1 — ), and
i=1
¢ = tll{go Prob[K;(t) > 0].
The conditions under which for all neurons we have ¢; < 1 are discussed
in [22].
3.2 Initialization of the Network Weights

It is quite common to initialize a neural network with randomly generated
weights, or to select them using some other method that may optimize
some criterion [58]. Here we select network weights so that prior to learn-
ing, the excitation probability of each neuron is given by the “neutral”

value ¢; = 0.5 for i = 1, ... , N when the input to each neuron is also
set to a neutral value. In particular the neutral input value is selected as
Ai =0, A4; = A° >0 and w;; =w; =w, fori,j =1, ..., N, so that:
A%+ w@
G =5 (4)
2Nw + w@Q
N
where Q = Z q; = Nq, (5)
=1
4A°

so that if ¢ = q = 0.5, we have w =

3N’

3.3 Learning

The biggest asset of ANNs is their ability to adapt by learning from
a given set of examples. An ANN llearning algorithm typically sets the
network weights in such a way as to map the values of the output neurons
in a manner that matches the requirements of a classification or decision
scheme, as a function of the input values received by the ANN. In a
recurrent network, which is obviously not going to be “feedforward” with
data going from a set of inputs to a set of outputs, even though still we
distinguish the input and output values of the network, some or all of
the neurons may act as both input and output neurons.

The ANNSs’ ability to learn is closely related to their property of be-
ing universal approximators for bounded and continuous functions [14],
which was also established for the RNN in [27[[28]. Of the many different
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types of learning algorithms, the ones based on Gradient Descent — that
also include most Deep Learning Algorithms — are commonly used. In
particular, the RNN’s Gradient Descent learning algorithm was intro-
duced in [22] and extended in [30], both for feedforward and recurrent
(feedback) networks. In [7] a further extension was presented for feedfor-
ward RNNs.

Denote by A = (A1, ... ,Ax) and A = (A1, ..., An). Denote by ¢ = (A, \)
and let the vector Y = (y1, ... ,yn) be such that y; € [0, 1[. Suppose we
are given a data set D which is composed of pairs (¢,Y"). Then a simple
objective of a learning algorithm can be stated as follows. Let W be the
set of all weights of the network W = {w;fj,w;j : 1 <i4,5 <N} Then
the learning algorithm approximates the following optimization problem:

. 1 T 12
arg min C, where C = 3 Z aiqi(e, W) — yi]”. (6)
(v, Y)ED

and a; > 0 is a constant which determines the relative importance of
neuron 3. In the experiments presented in the sequel, the network has
just one output neuron, so that we will set a; = 1 only for that neuron,
while a; = 0 for all other neurons.

Note that we have written q;(¢, W) to stress the fact that ¢; depends only
on the inputs and on the weights of the network. The learning carries
out this optimization iteratively, by iterating through all the weights for
a given ()i, Y), and repeating this process for all the (:,Y) € D.

After the initialization we maintain the equality W; ; = wI jtw; =2w

*

;; using the gradient iterations

so that we only need to compute each w
for k and each pair of neurons (u,v):

4 (k1) _ (k) oC
Woy,v =Wy, = — 7787.071Lv |W=Wk,(L,Y) . (7)

where 1 > 0 is known as the learning rate. The details of the computa-
tional algorithm can be found in [22].

4 Experimental Results and Conclusions

We use the “10-best features version” of the Bot-IoT dataset [47] and
limit the number of samples to 1177. To generate these features, the
authors of |[47] used data gathered in pcap files, and applied Correlation
Coefficient and Entropy techniques to chose the best training features.
Our testing dataset includes 589 samples with 350 attack instances and
239 non-attack instances.

The learning algorithm is implemented using Python, and the RNN used
in the experiments consists of N = 12 neurons, of which 10 them receive
external signals, and we have one output neuron. We also tried using
a minimal network with eleven neurons, as well as a larger one, but
achieved the best results using twelve neurons. When the number of
neurons was smaller, the results were worse, and for bigger topologies
the results did not improve. The weight updates are carried out after
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determining the output for every individual input data idem sample, in
contrast to batch learning.

In Table [1| we show the precision that is obtained with Random Inti-
talization, as compared to the initialization with “neutral weights”, and
thirdly the advantage of also using the additional feature of just learning
the excitatory weighs and maintaining the inhibitory weights so that the
sum of the two remain constant (Weight Restriction or WR). We clearly
see that the third approach is the best, both for training accuracy and
for recall (testing) accuracy.

The computation times presented in Table 2] are the average time values
for training the network. Introducing the “neutral” initialization signif-
icantly speeds up the learning time from the 488.48sec to 166.16ses on
average. When only the excitatory weights need to be learned, the learn-
ing time drops to 100.78sec. Thus the most accurate learning approach
is also the fastest.

In Figure [2| we present the evaluation (on the training and validation
datasets) during the learning process. In these figures, the “number of
iterations” is the number of samples that were used in the training.
The accuracy curves with neutral initialization have the desired shape -
the increase in the accuracy is visible almost from the beginning of the
training. As can be seen in Figure 28] it took more that 100 iterations
to initiate the increase in the accuracy. After this slow start, a rapid
increase occurs and then it stops and no further increase in the accuracy
can be observed. Introducing WR optimizes the learning process not only
by limiting the number of calculations needed but also by decreasing the
number of iterations needed to achieve results comparable with those of
the RNN without it. Also, it can be observed that the RNN with WR is
also much better at generalization.

In Figurell|a graphical representation of the results is shown in the form
of confusion matrices. It is clearly seen that using 'neutral’ initialization
we can also improve the RNN’s accuracy for attack detection.

Table 1: Comparison of Accuracy, Precision and Recall for the best models

achieved with the two weight initializations

Random |’Neutral’|’Neutral’+WR

’I‘raithalid’I‘railﬁValidTrail{lValid
Accuracy

86.29]83.71]96.90[96.09[96.80[96.09
Precision

100.0[100.0[99.79[100.0[99.48[100.0

Recall
77.83] 75.0 [94.80[94.00[95.33[94.00
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(a) Random initialization (b) Neutral initialization (both for
Weight Restriction applied and
without it)

Fig. 1: Confusion matrices of the networks with different types of weight handling
approaches implemented after the stabilization of the learning process

Table 2: Comparison of average execution times [s] for the models achieved with

different types of weight handling implemented

Random | 'Neutral’ |’Neutral’+WR
488.48 166.16 100.78

In future work we will examine the design of attack detectors that can
identify multiple forms of attacks simultaneously. This is a a very chal-
lenging task that needs to be addressed with more sophisticated tech-
niques include the use of multiple simultaneously operating neural net-
works.

‘We also plan to integrate these attack detection techniques in our existing
test-bed which has been reported recently [?], so that we may evaluate
the capacity of an integrated system not only to detect attacks, but also
to react in a manner which mitigates or eliminates their effect.
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