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Jakub Czartowski,1 Konrad Szymański,1 Bartłomiej Gardas,1,2 Yan V. Fyodorov,3 and Karol Życzkowski1,4
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For a given Hamiltonian H on a multipartite quantum system, one is interested in finding the energy E0 of its
ground state. In the separability approximation, arising as a natural consequence of measurement in a separable
basis, one looks for the minimal expectation value λ⊗

min of H among all product states. For several concrete
model Hamiltonians, we investigate the difference λ⊗

min − E0, called the separability gap, which vanishes if the
ground state has a product structure. In the generic case of a random Hermitian matrix of the Gaussian orthogonal
ensemble, we find explicit bounds for the size of the gap which depend on the number of subsystems and hold
with probability one. This implies an effective entanglement criterion applicable for any multipartite quantum
system: If an expectation value of a typical observable of a given state is sufficiently distant from the average
value, the state is almost surely entangled.
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I. INTRODUCTION

In describing complex many-body physical systems one
often postulates a suitable Hamiltonian H and tries to find
its ground-state energy E0. From a mathematical perspective,
one thus faces an optimization problem when searching for
the minimal expectation value among all normalized pure
states |ψ〉, that is to say, E0(H ) = minψ 〈ψ |H |ψ〉. In principle,
if a Hermitian Hamiltonian matrix H is provided, one can
diagonalize it, find its spectrum, and thus easily identify the
smallest eigenvalue E0. Nevertheless, if the system in question
consists of L interacting particles (e.g., spins), the dimension
N of the matrix grows exponentially, N = 2L, rendering this
simplistic approach ineffective for L � 1.

Although heuristic algorithms for large systems exist [1,2],
they are most likely to fail in the high-entanglement limit
[3]. In such cases of practical importance, one applies various
methods based on quantum annealing [4,5] and can depend on
an increasing number of dedicated physical annealing systems
[6–9]. Relying on this approach, however, one faces a variety
of difficulties and challenges [10]. There is one particular
drawback that is not readily evident. Namely, at the end of a
quantum annealing, one measures the orientation of individual
spins forming the system and obtains an approximation to
the ground-state energy related to a product state λ⊗

min(H ) =
minψsep〈ψsep|H |ψsep〉, where the minimum is taken over all
product states |ψsep〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φL〉.1 Such sep-
arable states, admitting the simplest tensor network structure
with bond dimension being one [11], are physically associated
with mean-field-like approximations.

1Measuring a complex system in a highly entangled energy basis
(which may a priori be unknown) is practically impossible.

Although for a system composed of L ∼ 103 spins select-
ing the optimal configuration of signs out of 2L possibilities
is already a great achievement, in this way one cannot obtain
any approximation for the ground-state energy better than the
minimal product value λ⊗

min(H ). The size of the separability
gap �sep(H ), defined by the difference of both minima

�sep(H ) = λ⊗
min(H ) − E0(H ), (1)

depends clearly on the analyzed Hamiltonian H .
The aim of the present work is to investigate to what

extent this issue poses a fundamental limitation to the near-
term quantum annealing technology. In particular, we identify
Hamiltonians for which the separability gap (1) becomes
significant. For those Hamiltonians there exists a systematic
upper bound for the precision of the separable state approx-
imation commonly used by noisy intermediate-scale devices
[12], quantum annealers in particular.

Since the latter devices are far from being perfect in
many aspects [13], the measurement process they perform
has not been put under theoretical scrutiny. However, as the
quantum technology improves, this problem becomes more
and more relevant for practical applications [14]. In this paper
we show that for a generic Hamiltonian the separable state
approximation leads to a significant and systematic error of
the ground-state energy. Our findings allow us to formulate
the large-deviation entanglement criterion based on a generic
macroscopic observable that is applicable for any multipartite
quantum system. The term “generic Hamiltonian” refers to a
typical realization of a random Hermitian matrix pertaining to
the Gaussian orthogonal ensemble of a fixed dimension.

We emphasize that it is the measurement process per-
formed by current (and most likely also by near-term [15,16])
quantum annealers that serves as the main motivation behind
our work. As far as we know, with these machines one can
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only measure individual spins in the computational basis.
A primary example is the D-Wave 2000Q machine where
all spins are measured in the z basis to reconstruct the fi-
nal (classical) energy. Here we simply pinpoint far-reaching
consequences of this fact, indicating the very limit of the
underlying present-day technology.

II. EXTREME SEPARABLE VALUES
AND PRODUCT NUMERICAL RANGE

To tackle the aforementioned issue, we begin with basic
notions and definitions concerning the spectrum of quantum
systems. The set of possible expectation values of an operator
H among all normalized states W (H ) = {z : z = 〈ψ |H |ψ〉}
is called the numerical range [17]. For any Hermitian matrix
H = H† of order N , this set forms an interval along the real
axis between the extreme eigenvalues W (H ) = [E0, EN−1],
where the eigenvalues (possibly degenerated) are ordered
E0 � E1 � · · · � EN−1.

Assume now that (i) N = MJ so that the Hilbert space
has a tensor structure HN = H ⊗J

M and (ii) the product states
|ψsep〉 are defined. By analogy, the set of expectation values
of H among normalized product states W ⊗(H ) = {z : z =
〈ψsep|H |ψsep〉} is called the product normal range [18]. By
definition it is a subset of W (H ) and for a Hermitian H it
forms an interval between extreme product values W ⊗(H ) =
[λ⊗

min, λ
⊗
max]. The product numerical range has found several

applications in the theory of quantum information [19]. For
instance, if the minimal product value of a Hermitian matrix H
of size d2 is non-negative, then H represents an entanglement
witness or a positive map useful for entanglement detection
[20].

A. Linear chain of interacting qubits

The model we are going to discuss first is motivated by
the idea of finding the ground state of a physical system
(consisting of interaction qubits) with spin-glass quantum
annealers [6]. After the annealing cycle has been completed,
just before the final measurement, the system Hamiltonian
reads [5]

H = −
∑

〈i, j〉∈E

Ji j σ̂
z
i σ̂ z

j −
∑
i∈V

hiσ̂
z
i . (2)

Here σ̂ z
i is the zth component of the spin- 1

2 operator (acting
on a local Hilbert space H2) associated with the ith qubit.
The input parameters Ji j and hi are defined on a graph G =
(E ,V ), specified by its edges and vertices. They encode the
initial problem to be solved [6]. Clearly, this Hamiltonian is
classical in the sense that all its terms commute. Thus, the
final measurement can be carried out on individual qubits, in
any order, without disturbing the system [21]. After that, the
ground-state energy is easily reconstructed from the eigenval-
ues that were measured. This is of great practical importance.
However, to become general purpose computing machines
[12], near-term annealers will need to include interactions
between the remaining components of the spin operator σ x

i
and σ

y
i [22].

General purpose computing machines are those that realize
the gate model of quantum computation to which adiabatic

quantum computing is equivalent (with possible polynomial
overhead) (cf. Ref. [22]). Although one cannot establish this
equivalence with only ZZ interactions, it is sufficient to add
only XX - or ZX -type interactions to the annealer Hamiltonian
to demonstrate universality [23].

For the sake of argument, assume that the final measure-
ment can be accomplished faithfully. Also, let the system be
shielded from its environment for as long as it is necessary to
perform computation. Even then, there exists a fundamental
limitation on how much information can be extracted from
the system by measuring it in the computational basis. We
demonstrate this feature by studying a chain of L spins with a
nearest-neighbor coupling: the one-dimensional (1D) Heisen-
berg model in the transverse magnetic field [24]

H = −
L−1∑
i=1

(
σ̂ z

i σ̂ z
i+1 + σ̂ x

i σ̂ x
i+1

) − h
L∑

i=1

σ̂ z
i . (3)

Although for a general Hamiltonian it is hardly possible to
evaluate the minimal product value analytically, it is doable in
the case of vanishing magnetic field h = 0.

In order to simplify the matter, we assume spherical coor-
dinates (θ ′, φ′) on a Bloch sphere, rotated such that the main
axis lies along the y axis of the standard Cartesian coordinates.
Under such an assumption it can be shown that the expectation
value on a separable state |� ′

sep〉 = ⊗L
i=1 |ψ (θ ′

i , φ′
i )〉 yields

〈� ′
sep|H |� ′

sep〉 =
L−1∑
i=1

sin θi sin θi+1 cos(φi − φi+1), (4)

and thus the minimal product value reads λ⊗
min = 1 − L.

A numerical simulation [cf. Fig. 1(a)] shows that the sepa-
rability gap �sep plays a crucial role for any system size. For a
large number of qubits the gap grows linearly with the system
size �sep ≈ CL, with C ≈ 0.27. In the asymptotic limit L →
∞, the ground-state energy of (3) is derived analytically,
E0/L = −4/π , for the same system with periodic boundary
conditions [25,26]. As in this limit E0 does not depend on the
boundary conditions, we arrive at the explicit result for the
asymptotic separability gap

�sep(H ) = λ⊗
min − E0 −−−→

L→∞

(
4

π
− 1

)
L. (5)

This implies a systematic error if the ground-state energy
is approximated by reconstructing the ground state by an
optimal product state. To put it differently, in this case the
true minimal energy of the system can never be reached by
any annealing procedure.

The separability gap is maximal at h = 0 and vanishes in
the case of very strong fields |h| � 1, for which the interaction
part of H can be neglected. Interestingly, this dependence
is not monotonic, as the separability gap �sep exhibits its
minimum at h ≈ 2

√
2. At this value of the field the gap

tends to zero, since the ground state of the system becomes
a separable Néel product state [27].

B. Toy model with interaction between all subsystems

Consider an arbitrary Hamiltonian H describing a system
of L qudits and acting on the space of dimension dL. If the
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FIG. 1. Numerical solution obtained for the 1D Heisenberg
model in Eq. (3). (a) Ground-state energy E0 and minimal reachable
energy λ⊗

min as a function of the system size L. Analytic calculations
yield λ⊗

min = 1/L − 1 and the best fit results in E0/L = 0.63/L −
1.27. (b) Separability gap �sep/L := (λ⊗

min − E0)/L versus the mag-
netic field h. The apparent local minimum at h ≈ 2

√
2 corresponds

to a Néel product state.

eigenstate |ψ0〉 corresponding to the eigenvalue E0 is sepa-
rable, the separability gap vanishes by definition. However,
the reverse implication does not hold, as the gap �sep can
be arbitrarily small even if two eigenstates with the smallest
energies E0 and E1 are strongly entangled.

To investigate this problem consider a model Hamiltonian
matrix representing a two-qubit system

H2 =

⎛
⎜⎝

0 0 0 1
0 0 a 0
0 a 0 0
1 0 0 0

⎞
⎟⎠ =: A(1, a, a, 1), (6)

where A(x1, . . . , xN ) denotes a matrix with the vector x at the
antidiagonal and zero entries elsewhere. Then the Hamilto-
nian can be written as [25]

H2 = (2 + 2a)σ⊗2
x + (2a − 2)σ⊗2

y . (7)

We assume that a ∈ [0, 1], so the ordered spectrum of H2

reads (−1,−a, a, 1) and E0 = −1. In the nondegenerate case
a ∈ (0, 1), all the eigenvectors of H2 are maximally entangled
and they form the Bell basis [28]. Due to the special form of
H2, it is possible to perform optimization over product states
analytically. By assuming angular parametrization on the
Bloch sphere |ψ (θi, φi )〉 = (cos θi/2, eiφi sin θi/2) for each
qubit, we arrive at the expectation value of H2 on a product

state |ψsep(θ1, θ2, φ1, φ2)〉 ≡ |ψsep〉,

〈ψsep|H2|ψsep〉 = 1
2 sin θ1 sin θ2

× [cos(φ1 + φ2) + a cos(φ1 − φ2)], (8)

which is to be minimized. By setting θ1 = θ2 = π/2,
φ1 + φ2 = π , and φ1 − φ2 = π we arrive at the minimal
value λ⊗

min(H2) = −(1 + a)/2. Note that the separability gap
�sep = (1 − a)/2 is the largest for a = 0 and vanishes for
a = 1.

Analyzing the dimension of a subspace which contains at
least a single separable state, one can show [18] that for a
Hermitian matrix of order N = 4 the minimal product value is
not larger than the energy of the first excited state E0 � λ⊗

min �
E1, so in this case the separability gap is bounded �sep �
�1 = E1 − E0. Hence, in the limit a → 1 the spectrum of H2

becomes degenerate and thus the separability gap vanishes.
Let us now generalize the above model for L qubits by

considering a symmetric, antidiagonal real matrix of size
N = 2L such that (HL )1,N = (HL )N,1 = 1 and all other entries
are equal to zero. This Hamiltonian captures an all-to-all type
of interaction between qubits and can be written in a com-
pact form HL = σ⊗L

+ + σ⊗L
− , where σ± = σx ± iσy. The only

nonzero eigenvalues are ±1 and thus E0 = −1. To calculate
the minimum value over the product states λ⊗

min, we again
resort to the polar coordinates on the Bloch ball and define
state |�sep〉 = ⊗L

i=1 |ψ (θi, φi )〉. Calculating the expectation
value on such state yields

〈�sep|HL|�sep〉 = 21−L

(
L∏
i

sin(θi)

)
cos

⎛
⎝ L∑

j=1

φ j

⎞
⎠, (9)

which is easily minimized with θi = 0 and
∑n

j=1 φ j = π . The
resulting minimal separable expectation value λ⊗

min(HL ) =
21−L tends to zero as L → ∞ (recall that E0 = −1). Similar
conclusions can be drawn by analyzing a family of real
symmetric and antidiagonal Hamiltonians with no more than
2L nonzero entries,

(H ′
L )i, j =

⎧⎪⎨
⎪⎩

ak for k = 0, . . . , L − 1,

(i, j)= (1+k, N −k) ∨ (i, j)= (N−k, 1+k)

0 otherwise.

In particular, setting a1 = 1, one obtains E0 = −1, and thus
the support of the spectrum is [−1, 1]. On the other hand, one
can show, using an analogous method to before, that

λ⊗
min(H ′

L ) = 21−L
L∑

k=1

|ak|. (10)

Hence, the above model extends the family of Hamiltonians
for which λ⊗

min tends to zero in the case of a large number of
qubits, despite the support of HL being fixed.

As we will shortly see, this nonintuitive property is char-
acteristic of generic Hamiltonians. This is an important result,
especially since λ⊗

min(H ) cannot be calculated analytically in
general [29] and furthermore all known numerical methods
are restricted to small system sizes (cf. Appendix A).
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III. GENERIC HAMILTONIANS OF L-QUBIT SYSTEMS

The situation in which separable states do not approximate
well the ground state is in some sense generic (or typical).
To substantiate this statement let us consider random Hermi-
tian matrices drawn from the Gaussian orthogonal ensemble
(GOE) of size N = 2L, which describe Hamiltonians acting
on L qubits. For each sample matrix H we wish to determine
the minimal eigenvalue E0 and estimate the minimal separable
expectation value λ⊗

min. Due to the concentration of measure
in the limit of a large system size, these quantities become
self-averaging, so for a typical realization their values are
close to the ensemble averages [30].

Generically, no product states are found in subspaces with
dimension comparable to N . In the case of L qubits a subspace
of dimension 2L − L − 1 almost surely (a.s.) contains no
product state [31]. It is therefore reasonable to expect that
the range of expectation values of a GOE Hamiltonian over
product states shrinks with increasing system size: Product
states are superpositions of almost all eigenstates of the
Hamiltonian. This behavior holds true as it is a consequence
of the following two results.

Proposition 1. Consider a generic Hamiltonian represented
by a GOE matrix H of size N = MJ , with M, J � 1 normal-
ized as 〈TrH2〉 = N , so that the minimal energy asymptoti-
cally reads E0 → −2.

Then the minimal value λ⊗
min among all product states of

the J-partite system satisfies both estimates

− 2J√
N

(1 + ε1) �
a.s.

λ⊗
min �

a.s.
−
√

4 ln N

N
(1 − ε2), (11)

understood as follows: Take arbitrary fixed positive constants
ε1, ε2 > 0. Let AN denote the following event: For a given N
the number λ⊗

min satisfies both inequalities (11). Then, for an
arbitrary δ > 0 there exists such N∗ that for all N > N∗ the
event occurs with probability P(AN ) > 1 − δ.

Proposition 2. The above estimates work also for the par-
tition of total space into L qubits. Let us assume that M = 2K

so that N = 2L with L = K + J , and any state separable with
respect to the partition H ⊗L

2 is separable for splitting H ⊗J
M

as well.
To derive the upper estimate note that the diagonal entries

of H correspond to expectation values among product states
|i1i2, . . . , iJ〉. For any random GOE matrix of size N , its diag-
onal D = diag H is a sequence of N numbers independently
drawn from the normal distribution N (0,

√
1/N ). Therefore,

the typical minimal entry on diagonal 〈min D〉GOE behaves
as −√

4 ln N/N [32] and leads to the second inequality in
(11). The reasoning leading to the lower estimate relies partly
on the use of the so-called replica trick and saddle-point
approximation (cf. [33] and Appendixes B and C for a more
detailed analysis).

Figure 2 presents histograms of the smallest separable
expectation value λ⊗

min obtained for a sample of 103 random
Hamiltonians from the Gaussian orthogonal ensemble of size
N = 2L. Numerical data are obtained by the algorithm de-
scribed in Appendix A or a standard optimization algorithm
(shown by asterisks). The results obtained correlate with the
bounds (11). The lower bound corresponds to a measurement
of the energy in an optimized separable basis, while the upper

-2 -1 0

*
*

*

P
λ⊗
min

L = 3

4

5

6

7

8

〈H〉ψ

FIG. 2. Collection of six distributions P(λ⊗
min) of minimal sepa-

rable expectation values for generic GOE Hamiltonians of dimen-
sion N = 2L for L = 3, . . . , 8. Red crosses (blue circles) denote
asymptotic lower (upper) bounds for λ⊗

min obtained in Eqs. (11) and
(B15) and with fixed M = 4 and green triangles represent the average
ground-state energy E0. Dashed lines are plotted to guide the eye.

one corresponds to a measurement carried out in the fixed
separable basis.

Proposition 1 implies that for a typical random matrix H
acting on an L-qubit system, λ⊗

min(H ) → 0 with probability
one, although E0(H ) → −2. This observation implies that
for a large system described by a generic Hamiltonian, the
separability gap is constant, �sep → 2, so it is not possible to
obtain an accurate estimation of the ground-state energy if the
measurement is performed in any separable basis.

It is worth emphasizing that the above observation has key
consequences for the theory of multipartite entanglement in
large quantum systems: Measuring any generic observable A
of a composed system of total dimension N in a separable
state yields an outcome close to the average of eigenvalues
Ā = TrA/N . This statement can be connected to earlier results
of Wieśniak et al. [34], who proposed that macroscopic quan-
tities, such as magnetic susceptibility, should be considered
as entanglement witnesses. In fact, our observation can be
formulated in a similar spirit.

Any generic Hermitian observable A of order N = MJ

allows one to construct two dual entanglement witnesses,
corresponding to both wings of the semicircular spectrum
W±(A) := I ± c±A such that any negative expectation value
TrρW± < 0 implies entanglement of the state ρ. The actual
value of the parameter c± = N/(J

√
Tr A2 ∓ Tr A), as a func-

tion of the total system size N , number of parties J , mean
value, and the variance of A, follows from the bound (11),
since it implies that the matrix W± is positive among all states
separable with respect to the partition HN = H ⊗J

M . The above
result can be reformulated into the following simple yet very
general large-deviation entanglement criterion. Namely, if an
expectation value of a typical observable A of order N = MJ

in the state ρ is sufficiently distant from the barycenter of the
spectrum Ā = TrA/N , that is, when

|TrAρ − Ā| > 2J
√

Tr A2/N2, (12)

then the state ρ is almost surely entangled with respect to the
partition into J subsystems with M levels each.

Hence this criterion belongs to the class of double-sided
entanglement witnesses 2.0 recently analyzed in [35]. Note
that the reasoning holds in one direction only, as there exist
also entangled states for which the expectation value is close
to the mean Ā. However, numerical computations confirm a
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-2 -1 0 1 2
0

1
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1

〈A〉|ψ〉

Q
2
(|ψ

〉)

FIG. 3. Range of allowed values for pure states of the system
consisting of L = 7 qubits in the plane spanned by the expectation
value 〈A〉|ψ〉 of a GOE observable A = H of size N = 2L and the
Meyer-Wallach measure Q2 of entanglement defined in Eq. (13).
Black crosses denote eigenstates of H , the red region is the numer-
ically determined range attained by pure states, and the shaded blue
region denotes the bound |TrAρ − Ā| � 2L

√
Tr A2/N2 implied by

Eq. (12), beyond which the states are entangled. In addition, yellow
stars represent a sample of ten random pure states and green circles
ten random product states.

natural conjecture that the larger the absolute value of the
deviation δ = |||〈φ|A|φ〉 − Ā|||, the larger the average entangle-
ment of the analyzed state |φ〉 (cf. numerical results presented
in Fig. 3). To quantify entanglement of pure states of an
L-qubit system, we used the family of measures introduced
by Meyer and Wallach [36], which are based on the linear
entropy of reduced states averaged over all possible reductions
consisting of k subsystems,

Qk (|ψ〉) = 2k

2k − 1

(
L

k

)−1 ∑
X :|X |=k

Slin(ρX ), (13)

where Slin(ρ) = 1 − Trρ2 is the linear entropy of a state ρ of
dimension 2k . This function captures the mean entanglement
of k-qubit subsystems with the rest of the system. Although
Fig. 3 depicts data obtained for Q2, similar results were
also analyzed for other measures of entanglement, including
quantities Qk , with k = 1, . . . , L. All these results support the
statement that the deviation of the expectation value 〈A〉ψ
beyond the bounds (12) can be used to quantify the degree
of entanglement of the analyzed state |ψ〉.

For comparison, Fig. 3 contains also data for random
separable states and generic random states, which are known
to be highly entangled [37,38]. The set of separable pure states
has a lower dimension and carries zero measure in the entire
set of all pure states, so its projection W ⊗(A) onto an axis
determined by the observable A is typically much smaller than
the entire range W (A). Asymptotically, in the limit of large
dimension N of the Hilbert space, the ratio of the volumes of
both sets tends to zero.

IV. DISCUSSION AND OUTLOOK

In this work we have investigated to what extent the near-
term quantum annealing technology may become fundamen-
tally limited by its intrinsic measurement process allowing
one to ask only yes or no questions of individual qubits. This
type of polling on a quantum system is probably the most
natural one and definitely the easiest to realize experimentally.
Unfortunately, as we have argued, it does not allow one to
extract all relevant information from the system in question.

In particular, we analyzed the separability gap and showed
that it is nonzero for several model Hamiltonians acting on
multipartite quantum systems. Moreover, we studied Hamil-
tonians constructed by random matrices from the Gaussian
orthogonal ensemble and demonstrated that for such a generic
Hamiltonian involving L qubits the minimal value of energy
λ⊗

min among all product states is significantly larger than
the ground-state energy E0. Thus, making use of near-term
quantum annealers, in which the final result is obtained by in-
dependent measurements of each of L qubits and corresponds
to a product state, cannot provide a reliable approximation for
the ground-state energy of a typical problem. Furthermore, we
formulated an entanglement criterion based on the expectation
value of a generic observable A among an arbitrary state ρ of
a composed quantum system and showed that TrρA provides
direct information concerning the degree of entanglement of
the investigated state ρ.
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APPENDIX A: NUMERICAL TECHNIQUE TO
ESTIMATE λ⊗

min(H )

We briefly sketch here the approach employed in this work
to calculate the separability gap for a random Hamiltonian
pertaining to the GOE, in the case of a small system size
(up to N = 28). The ground-state energy E0 can be obtained
easily in this case. The algorithm used for calculation of
minimal separable expectation λ⊗

min, on the other hand, utilizes
the divide and conquer strategy [39]. To begin with, let us
consider a general case of minimizing expectation value of
〈α ⊗ β|H |α ⊗ β〉, where |α〉 ∈ H2 is a qubit state and |β〉
belongs to a d-dimensional space Hd . The expectation value
can be rewritten as

〈α ⊗ β|H |α ⊗ β〉 = 〈α|H|β〉|α〉, (A1)

where H|β〉 = TrB[H (1 ⊗ |β〉〈β|)] is a matrix of size 2. If |β〉
is fixed, further optimization over |α〉 is trivial: The result is a
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minimal eigenvalue of the 2 × 2 Hermitian matrix H|β〉,

min
|α〉

〈α|H|β〉|α〉 = Tr H|β〉
2

−
√(

H|β〉
2

)2

− det H|β〉. (A2)

This expression can be written in a more succinct form.
Let Hi = TrA[H (σi ⊗ 1)] (with σ0 = 12). Then the expression
(A2) becomes

〈H0〉
2

− 1

2

√
〈H1〉2 + 〈H2〉2 + 〈H3〉2, (A3)

where all averages are taken over the d-dimensional vector
|β〉. The minimization of 〈α ⊗ β|H |α ⊗ β〉 can be now inter-
preted as minimization of the convex function over a four-
dimensional convex set of simultaneous expectation values
called the numerical range:

W (H0, H1, H2, H3)

= conv{(〈H0〉, 〈H1〉, 〈H2〉, 〈H3〉)|β〉 : |β〉 ∈ Hd}. (A4)

This problem is easily solved numerically with arbitrarily high
accuracy.

The solution of the H2 ⊗ Hd case can be leveraged to the
more general H (⊗k)

2 ⊗ Hd , where k ∈ N: Using the proce-
dure described above, it is possible to determine an arbitrarily
close approximation of the set

W ⊗(H0, H1, H2, H3)

= conv{(〈H0〉, 〈H1〉, 〈H2〉, 〈H3〉)|γ 〉 : |γ 〉 ∈ H2 ⊗ Hd , |γ 〉
= |α ⊗ β〉}. (A5)

This (convex) set W ⊗ can then be used in place of W in the
calculation of λ⊗

min; the result is minimal energy over separable
states in the tripartite case. This result can be similarly used
further; the recursive structure provides natural extensions.
The complexity of the algorithm is exponential, owing to
the NP-completeness of the problem, but it is possible to
determine certified lower and upper bounds of λ⊗

min this way
in deterministic time and linear space complexity.

APPENDIX B: LOWER ESTIMATE IN PROPOSITION 1

In this Appendix we provide reasoning which leads to the
left-hand side of Eq. (11) in the main text for any generic
Hamiltonian H of order N = MJ , where M denotes a high
(M � 1), but otherwise arbitrary dimension of each subsys-
tem, while J stands for their number. The method used relies
upon the use of the replica trick, which is a powerful but not
fully rigorous method of theoretical physics.

We wish to show that the minimal separable expectation
value λ⊗

min(H ) vanishes in the large-system limit N → ∞.
Here we analyze separability with respect to partition of the
system into J subsystems of size M each. Due to the effect
of concentration of measure [see a more detailed discussion
below after Eq. (B14)] the above quantity is self-averaging,
which means that its distribution becomes strongly localized
around the expectation value. Therefore, it is sufficient to
study the average value and demonstrate that

〈λ⊗
min〉 ∼ −2J/

√
N, (B1)

where the angular brackets denote the ensemble average and

λ⊗
min = min

|w⊗〉
〈w⊗|H |w⊗〉, (B2)

with w⊗ := w1 ⊗ · · · ⊗ wJ . To this end, we assume a Hermi-
tian Hamiltonian H drawn from the GOE with scale parameter
a such that 〈Tr H2〉 = aN .

To begin with, we introduce the partition function [40,41]

Zβ =
∫

exp(−β〈w⊗|H |w⊗〉)dw⊗, (B3)

where β plays the role of the inverse temperature. Here dwi

denotes the integration measure over a single-qubit space.
Then the typical separable expectation value (B1) can be
found as the zero-temperature limit of the associated free
energy 〈

λ⊗
min

〉 = − lim
β→∞

ln Zβ

β
. (B4)

To calculate the latter limit, consider the function defined for
a positive integer n,

Z n
β =

∫
exp

(
−β

n∑
i=1

〈
w

(i)
⊗

∣∣H ∣∣w(i)
⊗

〉) n∏
i=1

dw
(i)
⊗ , (B5)

which is the nth power of Zβ . Then we can formally write

〈ln Zβ〉 = lim
n→0

〈
Z n

β − 1

n

〉
= d

dn

〈
Z n

β

〉∣∣
n=0, (B6)

which is interpreted as a derivative of an analytic continuation
of 〈Z n

β 〉. This average can be further simplified using the
equality which holds for any matrix X ,

〈exp(−β Tr HX )〉 = exp
[
aβ2(Tr X 2

H

)
/2

]
, (B7)

with a being the scaling parameter of the GOE. Here XH

denotes a Hermitian part of a matrix X . Therefore,

〈
Z n

β

〉 =
∫

exp

⎛
⎝1

2
aβ2

n∑
i, j=1

〈
w

(i)
⊗

∣∣w( j)
⊗

〉2⎞⎠ n∏
i=1

dw
(i)
⊗ . (B8)

By introduction of a collection of matrices Q(i, j)
k = 〈u(i)

k |u( j)
k 〉

one can use them as new integration variables which incur a
Jacobian, so that following the method of [42], we have

n∏
i=1

du(i)
⊗ = C(n, M )J

k=1,...,J∏
i, j=1,...,n

dQ(i, j)
k

(
J∏

k=1

det Qk

)(M−n−1)/2

,

(B9)
where the number C(n, M ) does not depend on J [further-
more, C(0, M ) = 1] and the domain of integration over ma-
trices Q goes over positive-definite matrices of size n with
diagonal entries fixed to be unity. After choosing a nonstan-
dard GOE scaling a = M = N1/J , the resulting integral can
be written in the form

〈
Z n

β

〉=∫
exp

⎧⎪⎪⎨
⎪⎪⎩

M

2

�︷ ︸︸ ︷[
β2

∑(
Q(i, j)

1 · · · Q(i, j)
J

)2+
∑

ln det Qk

]⎫⎪⎪⎬
⎪⎪⎭

×C(n, M )J
∏

dQ(i, j)
k

(∏
det Qk

)−(n+1)/2
(B10)

042326-6



SEPARABILITY GAP AND LARGE-DEVIATION … PHYSICAL REVIEW A 100, 042326 (2019)

suitable for the saddle-point–Laplace-method asymptotic ap-
proximation [33,43]. Namely, in the limit of large M � 1
the integral is dominated by the maximum of the exponent
argument, which eventually implies, when combined with
(B6) to the leading order,

〈ln Zβ〉 ≈ lim
n→0

M�(Qoptim)

2n
. (B11)

Henceforth, we solve the optimization problem assuming the
so-called replica-symmetric ansatz amounting to searching for
the optimum on the manifold of n × n matrices Q1 = · · · =
QJ := Q, where the matrix Q is parametrized with a single
parameter q as

Q(q) =

⎛
⎜⎜⎜⎜⎝

1 q · · · q

q 1 · · · q
...

...
. . .

...

q q · · · 1

⎞
⎟⎟⎟⎟⎠. (B12)

Such an ansatz is only the simplest among many possible
choices compatible with properties of the maximal �[Q(q)]
(and eventually n → 0) at low temperature (high values of β)
(see Appendix C). It is well known that optimizing in this class
gives, strictly speaking, only an upper bound for the true free
energy. Checking whether optimizing in a more general class
of matrices built by the so-called hierarchical Parisi ansatz
[44] can provide a lower ground state is a subject left for future
investigation.

Thus the problem within the replica-symmetric ansatz
amounts to the optimization of

�[Q(q)] = β2
∑

(Q◦J )2
i, j +

∑
ln det Qk

= const + β2 n(n − 1)

2
q2J

+ J{(n − 1) ln[1 − q] + ln[1 + q(n − 1)},
(B13)

where ◦ denotes the Hadamard (i.e., elementwise) product of
matrices. After some computation, one determines the optimal
value of q in the limit n → 0 and β � 1 is to be given by q =
1 − 1/β + o(1/β ). Therefore, the following estimate holds:

〈ln Zβ〉 ∼ M

2

{
β2

2
(1 − q2J ) + J

(
q

1 − q
+ ln[1 − q]

)}

≈ M

2
J[2β − ln β]. (B14)

This immediately implies, after taking the limit β → ∞ in
Eq. (B4), that 〈λ⊗

min〉 ∼ −MJ , with M = N1/J , where N is
the total system size, J is the number of partitions, and M
is their local dimension. Moreover, following [41], one can
study fluctuations of the random quantity λ⊗

min around its mean
value. Namely, defining ε := λ⊗

min/N1/J , one can show that the
probability density for ε must have the large-deviation form
P(ε) ∼ exp{−N1/JI (ε)} where the rate function I (ε) has its
unique minimum at ε = −J . This quantifies the concentration
of measure phenomenon mentioned at the beginning of this
Appendix.

Since we have worked with the scaling a = M, the en-
semble average 〈λ⊗

min〉 needs to be compared to the average

minimal eigenvalue E0. Then we arrive at the desired expres-
sion 〈

λ⊗
min

〉
E0

= −JN1/J

−N (1+J−1 )/2
= JN−(1−J−1 )/2. (B15)

We have assumed that M � 1 such that the saddle-point
method can be used. Let us now consider the case of N →
∞; M � 1 is kept constant and L → ∞. In this limit the
following holds: 〈

λ⊗
min

〉
E0

= logM N√
N

. (B16)

This demonstrates that the estimate (B1) holds for J � 1,
which completes the reasoning concerning Proposition 1.
Therefore, when the dimension N = MJ increases, the mini-
mal separable expectation value λ⊗

min of a generic Hamiltonian
of size N with respect to partition H ⊗J

M approaches 0.
Let us now proceed to Proposition 2. Formally, to conduct

the proof we require that M = N1/J � 1. Let us now assume
that the local dimension forms a power of 2, M = 2K , so
the total dimension reads N = MJ = 2L with L = K + J .
Any state |ψ〉 entangled with respect to the partition of the
entire system into J subsystems of size M is also entangled
with respect to the finer partition into L qubits. Therefore,
the estimate (B16) holds also for the physically motivated
partition HN = H ⊗L

2 and implies that the ratio 〈λ⊗
min〉/E0

tends to zero in the limit N → ∞.

APPENDIX C: MOTIVATION FOR
SYMMETRIC-REPLICA ANSATZ

In this Appendix we present heuristic arguments in favor
of using the symmetric-replica ansatz. In the low-temperature
limit β → ∞, the subexponentials have limited importance,
provided they are nonpositive in a set of measure zero which
does not contain the maximum of the exponential function.
First, let us analyze the behavior of the exponent in this limit
(the subexponential terms will be taken care of later):

exp

(
1

2
aβ2

∑(
Q(i, j)

1 · · · Q(i, j)
L

)2
)

. (C1)

The term
∑

i, j (Q
(i, j)
1 · · · Q(i, j)

L )2 has a simple interpretation us-
ing Hadamard products, i.e., elementwise product of matrices
(A ◦ B)i, j = Ai, jBi, j . Let us denote by X a Hadamard product
of L terms, from Q1 through QL,

X = Q1 ◦ Q2 ◦ · · · ◦ QL. (C2)

Every positive-semidefinite X can be attained this way. By
M we denote the set of positive-semidefinite matrices with
unit diagonal and by J a matrix of ones, Jab = 1. Trivially
J ∈ M and J ◦ M = M , so M ◦ M ⊃ M . Due to the Schur
product theorem, M ◦ M ⊂ M , so M ◦ · · · ◦ M = M .

Since the diagonal of X is composed of ones, the positivity
condition ensures that |Xi, j | � 1. In such a case the maximum
of the exponent argument in Eq. (C1) is attained on X such
that X ◦ X = J . The only positive-semidefinite matrix X with
this property is a matrix of ones: Since X ◦ X = J , elements
of X can only be ±1 and any sign flip leads to a negative
eigenvalue.
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We cannot apply this result directly in the calculation
of the integral (C5) while using the saddle-point method;
subexponential terms are zero at this point and even if we omit
them and the limit in β → ∞ exists, the derivative d/dn is
ill-defined at n = 0. We know however that X = J is the limit
of the saddle points as β → ∞. Making use of this fact, let us
write the position of the saddle point as

Qi = J + Ei(β ). (C3)

In the limit β → ∞, the matrices Ei tends to zero. Using this,
let us expand Eq. (C2) and keep the terms linear in Ei only:

X = (J+E1) ◦ (J+E2) ◦ · · · ◦ (J+EL )=J+
L∑

i=0

Ei + O(E 2).

(C4)
Now the integral (C5) clearly separates:〈(

Z (H )
β

)n〉
GOE = C

∫
exp

[
1

2
aβ2(n2)

]∏
k

[
exp

(
2
∑

E (i, j)
k

))

× det(J + Ek )(M−n−1)/2dEk

]
. (C5)

Because of the separation, all Ei are optimized independently
and therefore are equal. Now we will argue that due to
symmetries of the integral, the optimal matrix E has a special
form captured by the replica-symmetric ansatz.

The term
∑

E (i, j) can be interpreted as 〈o|E |o〉, where
|o〉 = (1, 1, . . . , 1)T. If E ′ = OE OT for an orthogonal O such

that O|o〉 = |o〉, both the determinant det J + E ′ and
∑

E (i, j)

do not change; E ′ is optimal as well.
Let E ′′ = (E + E ′)/2. The argument of exponent for

E ′′ is the same. The determinant changes however; due to
Minkowski determinant inequality,(

det
E + E ′

2

)1/n

�
(

det
E

2

)1/n

+
(

det
E ′

2

)1/n

=
(

det
E

2

)1/n

, (C6)

so

det
E + OE OT

2
� det E . (C7)

This fact holds for every orthogonal matrix O leaving |o〉
unchanged: If n < L, this implies that either E is not optimal
(a contradiction) or E = E ′. Thus, E lies on the set invariant
under rotations leaving |o〉 unchanged. This implies that E ∝
(|o〉〈o| − 1) and we can parametrize Q as in Eq. (B12).

Strictly speaking, the above reasoning is valid if the objects
Q1, . . . , QL appearing in the expressions below are square
matrices of a definite integer dimension n. However, during
the calculation presented in Appendix B, a formal limit of
the analytically extended integral value is taken at n → 0.
Therefore, our argumentation is not entirely conclusive, but
only suggests that the final results obtained this way still hold
true.
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