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Abstract—We develop a Multi-Layer Perceptron (MLP) De-
composition architecture for mobile Internet Things (IoT) indoor
positioning. We demonstrate the performance of our architecture
on an indoor system that utilizes ultra-wideband (UWB) posi-
tioning. Our architecture outperforms the following benchmark
processing techniques on the same data: MLP, Linear Regression,
Ridge Regression, Support Vector Regression, and the Least
Squares Method for indoor positioning. The results show that our
architecture can significantly advance the positioning accuracy
of indoor positioning systems and enable indoor applications
such as navigation, proximity marketing, asset tracking, collision
avoidance, and social distancing.

Index Terms—indoor positioning, Multi-Layer Perceptron
(MLP), Artificial Intelligence (AI), machine learning (ML), Ultra-
wideband (UWB), Internet of Things (IoT)

I. INTRODUCTION

Indoor positioning (IP) [1] is one of the significant problems
that must be solved in order to enable a variety of applications
for the mobile Internet of Things (IoT) including navigation,
proximity marketing, asset tracking, collision avoidance, and
social distancing. While significant advances have been made
in this area over the past decade [2], IP systems still suffer
from low positioning accuracy due to Non-Line of Sight
(NLoS) scenarios. Ultra-Wideband (UWB) has emerged as one
of the key methods in achieving high positioning accuracy;
however, it can still suffer from significant degradation in
performance due to multipath components in the wireless envi-
ronment. As a result, novel signal and information processing
techniques are required in order to achieve robust positioning
accuracy in indoor environments that have multiple obstacles.

Artificial Intelligence (AI) techniques hold much promise
to process information in IP systems [3]. In this paper, we
develop a novel architecture based on Al, which we call
“Multi-Layer Perceptron (MLP) Decomposition” for mobile
IoT indoor positioning. In our architecture, in the first stage, a
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bank of MLPs process the position and distance information
from each anchor. In the second stage, the outputs of the bank
of MLPs are fed into a main MLP block. While decomposition
of MLPs into multiple stages has been used in the Machine
Learning (ML) literature [4]-[6], to the best of the authors’
knowledge, this is the first work that uses a design based on
MLP decomposition for indoor positioning.

We demonstrate the performance of our architecture on
actual data collected in an indoor environment with multiple
obstacles. We show that our architecture outperforms all of
the following benchmark processing techniques with respect
to mean positioning error on the same data, when all of these
techniques have been optimized: MLP, Linear Regression,
Ridge Regression, Support Vector Regression and the Least
Squares Method for indoor positioning [7]. These results imply
that our architecture can significantly advance the positioning
accuracy of existing indoor positioning systems and enable
mobile IoT indoor applications that require high positioning
performance.

The rest of this paper is organized as follows: In Section II,
we compare our work against the past work in this area. In
Section III, we describe our MLP Decomposition architecture.
In Section IV, we present our results on the positioning
performance as well as the computation time. In Section V,
we present our conclusions.

II. RELATED WORK

In this section, we describe the relationship of this work
to the literature in four categories: (1) We contrast our work
against those that utilize lower-precision indoor positioning
technologies. (2) We explain the differences between our work
and high-precision indoor positioning technologies. (3) We
contrast our work with alternative processing technologies that
do not utilize Al. (4) We describe the differences between our
work and other processing techniques that utilize Al for indoor
positioning.



First, in regard to articles in the relatively low-precision
indoor positioning technology, Reference [8] achieves a posi-
tioning error of 50 cm by using RSSI data from BLE devices.
In [9], a positioning error of 37 cm was achieved by using
a 24-GHz radar. In [10], an Ultrasonic Time of Flight (ToF)
approach was utilized to obtain a positioning error of 31 cm.
In contrast with these articles, in our demonstrations in this
paper, we use UWB technology in conjunction with our MLP
decomposition architecture in order to achieve much higher
positioning accuracy.

Second, in the category of high-precision indoor positioning
technologies, References [11], [12], and [13] (as cited by
[14]) achieve a positioning error of 20 cm, 5 c¢m, 3.3 cm,
respectively; however, the high-precision LIDAR technology
was used in achieving such low error. In [15]-[18], by using
the Visible Light Positioning (VLP), positioning errors of 17
cm, 7 cm, 1 cm, 0.82 cm, respectively, were obtained in a
small experimental area without any obstacles between the
light sources and the object. Even though these articles achieve
very low positioning error, the high performance obtained is
due to the underlying technology utilized. In contrast, in this
paper, we develop a processing technique that improves the
performance of the underlying technology.

Third, we discuss the past work in the category of non-
Al-based processing techniques for indoor positioning, in
particular when UWB is used as the underlying technology:
In [19], an UWB positioning system for tracking customer
pathway achieved a 11 cm positioning error in a small retail
shop-like space with rows of shelves. In [20], a Simultaneous
Calibration and Localization (SCAL) algorithm framework
achieves a 25 cm and a 24 cm positioning error for target and
beacon positioning, respectively, in an indoor supermarket pas-
sageway. In [21] and [22], a federated and standard Extended
Finite Impulse Response (EFIR) filter achieved 36 cm and 18
cm positioning errors, respectively, for UWB positioning in an
empty indoor experiment area of a university building. In [23]
(as cited by [14]) and [24], both works used UWB technology
in their approaches and achieved 29 cm and 23 cm positioning
errors, respectively. In contrast with these existing processing
techniques for UWB indoor positioning systems, in this paper,
we develop a novel processing technique based on Al

Fourth, we address the references in the category of Al-
based processing techniques for indoor positioning: In [25],
an MLP model is used for learning the relationship between
the input and the output of an indoor positioning processing
system and the results are compared with the k-Nearest
Neighbor (k-NN) algorithm. In [26], a Kalman filter based
on Bayesian Filtering is used to overcome signal propagation
in complex environments. In [27], temporal fluctuations of
radio signals are analyzed; strong and weak radio wave groups
are processed via the k-means clustering algorithm. In [28], a
combination of a Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) are used respectively to
extract features and to classify UWB data. In [29], existing
machine learning algorithms are compared in terms of pro-
cessing time and accuracy by utilizing an RSS fingerprint

dataset which is taken by Wi-Fi devices in a multi-room
environment. In [30], an online independent support vector
machine classification method is used in conjunction with the
RSSI of Wi-Fi signals, thereby reducing the estimation error.
Our 2-stage MLP Decomposition technique is distinct from
all of the above Al-based processing techniques for indoor
positioning and achieves high positioning accuracy.

I1I. MLP DECOMPOSITION ARCHITECTURE FOR
INDOOR POSITIONING

In this section, we describe our novel MLP Decomposition
architecture for indoor positioning.

We first state the assumptions that underlie the design of our
architecture: We assume an indoor positioning system that has
been deployed over a region R. We focus on a system with
n anchors and 1 tag, where the tag corresponds to the mobile
device whose position we wish to determine.! We let T’ denote
the tag, and let A; denote the ith anchor, where i € {1,...,n}.
We let d; denote the distance between A; and T'. Furthermore,
we let x4, and y4, denote the z and y coordinates of the
position of A;.> (Note that these coordinates do not change
over time in our system; only d; may change over time if the
tag moves around.)
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MLP Decomposition Architecture
Fig. 1. MLP Decomposition Architecture for Indoor Positioning

In Fig. 1, we display our MLP Decomposition architecture,
which is an end-to-end trainable neural network architecture.’
In this architecture, the Main MLP Block combines the outputs
of n MLP models, each of which is for a single anchor. The
main idea behind this architecture is to achieve data fusion

'We focus on a system with a single tag. Once we develop our method, it
can be applied to each tag in a system that has many tags.

2We model a position only on the two-dimensional plane in this paper; we
do not consider the position in three-dimensional space.

3A neural network architecture is said to be end-to-end trainable if the
entire architecture is trained together. In this case, we emphasize that each
MLP block in the first stage and the Main MLP block in the second stage
are not trained separately.



in two stages: In the first stage, each MLP Block ¢ fuses the
distance d; for the T' - A; pair with x4, and y4, (which are
inputs to this MLP block) in order to produce a set of features
{fiqa}eeqr....Q1 }» Where f; , is the gth output of the MLP
Block i. In the second stage, the Main MLP Block fuses these
sets of features (received as the outputs of the MLP blocks
in the first stage) in order to produce (zr,yr), namely the
estimate of the current position of tag T'.

Each MLP Block ¢ is comprised of L hidden layers and
an output layer (which is the L + 1st layer). Each layer [ €
{1,...,L+ 1} contains H; neurons, each of which is defined
by its connection weights, its bias parameter and activation
function. The Main MLP Block in Fig. 1 is comprised of Ly
hidden layers and an output layer. The output layer consists
of 2 neurons that correspond to 7 and yr. Each hidden layer
I € {1,..., Lyan} contains Hlmalin neurons. The parameters
of each neuron in the Main MLP Block are its connection
weights, its bias parameter and activation function.

IV. RESULTS

In this section, we demonstrate the empirical results for
our MLP decomposition architecture in an UWB system. We
compare the results with alternative techniques that process the
same set of positioning data. We show that our architecture
outperforms all of the alternative techniques studied in our
experimental set-up.

A. Experimental Setup

In this section, we aim to explain how we have obtained
our dataset. We emphasize that all of our results are based on
actual indoor positioning data that have been collected by an
UWRB system. Our system uses the anchors and the tag in the
Decawave DWM1001 module [31].

The deployment area for the anchors and the tag in our
experimental study is a furnished living room of a 3 m x
2.1 m apartment. We emphasize that this environment has a
rich multipath profile; since the UWB signal has a very wide
bandwidth, the channel seen by the UWB signal is highly
frequency-selective. Thus, this constitutes a scenario with
many NLoS components in addition to the LoS component,
which was present most of the time.

In our experiment, the number of anchors selected was
n = 4. The anchors were located close to the four corners
of the room. The room was divided into a two-dimensional
grid of 15 cm X 15 cm cells. In our experiment, the tag
visited the cell vertices in this grid exactly once. We took
5 distance measurements, spaced at 4 second intervals, at all
of the anchors for each visit of the tag to a vertex.

B. Parameter Tuning and Training

In this section, we explain the internal architecture of all of
the techniques that we use in our experiments. We compare
the indoor positioning accuracy of our MLP Decomposition
architecture against those of the following techniques: MLP,
Linear Regression, Ridge Regression, Support Vector Regres-
sion and the Least Squares Method for indoor positioning [7].

The training and optimization of all of these techniques were
performed in Python on Google Colab platform, except for the
Least Squares Method, which was performed in MATLAB.

The set of inputs to each of the above models was (z 4,,y4,)
and d;, except for the Least Squares Method whose input
was only the d;, where ¢ € {1,...,n}. We applied Max
Normalization in order to normalize the values of distances
and the anchor coordinates to the range [0, 1].

Table I displays the optimized configurations for the tech-
niques under examination. The first row of this table shows the
end-to-end optimized configuration of the MLP decomposition
architecture. (Recall that the internal architecture of each MLP
block in the first stage of Fig. 1 is identical; hence, the table
shows the resulting configurations of the MLP block and the
Main MLP block in this figure.) In our notation, [Hy, ..., Hp ]
is a vector whose lth entry H; is the number of neurons in
neural layer [. We use this notation in the table in order to
show the number of neurons in each hidden layer for the
MLP Decomposition architecture on the first row and for the
MLP on the second row of this table. In addition, we give the
configurations of the remaining techniques in the rest of this
table.

TABLE I
OPTIMIZED CONFIGURATIONS FOR THE TECHNIQUES UNDER
EXAMINATION

Model Type
MLP Decomposition

Parameters
MLP Block: [130 148 74]
Main MLP Block: [68 88 24]

MLP [126 118 36]
Linear Regression -
Ridge Regression a = 0.01

SVR-1 Kernel: Linear

SVR-2 Kernel: Radial Basis Function (RBF)
SVR-3 Kernel: Polynomial

SVR-4 Kernel: Sigmoid

Least Squares Method -

1) MLP Decomposition Architecture: We set the activation
function of each layer of the MLP Decomposition architecture
to Tangent Hyperbolic (tanh). We used the Keras Application
Programming Interface, which is a deep learning interface
of the TensorFlow platform of Python. Furthermore, we em-
ployed Adam in order to optimize the learning process and
used Mean Squared Error (MSE) as our error metric.

We used the following random search algorithm in order
to arrive at a local optimal MLP Decomposition architecture:
Consider the set S that is comprised of all of the integers
from 10 to 150 in increments of 2. We generate 100 MLP
Decomposition architectures independently by applying the
following procedure to generate each such architecture.

Procedure: We pick 6 elements at random successively from
this set S and denote the resulting sequence by (U). We set
the number of hidden layers L in each MLP block in the first
stage in Fig. 1 to 3. Then, we set the number of neurons H,
in the Ith layer of each MLP block as H; = U][l], for each
I € {1,2,3}. We set the number of hidden layers Ly, in
the Main MLP block to 3. We set the number of neurons in



the Ith layer of each MLP block as H™" = U[l] for each
le{4,5,6}.

We split our dataset into the training and test sets as 85%
and 15%, respectively. We train and test each of the 100
MLP Decomposition architectures generated above on the
same train and test sets. Throughout this paper, we define
the “positioning error” as the difference in Euclidean distance
between the actual position and the estimated position on the
two-dimensional plane. Our optimized MLP architecture is
defined as the MLP Decomposition architecture that has the
lowest mean positioning error for the test set across these 100
MLP Decomposition architectures.

C. Performance Comparison

In Table II, we compare the performance of all of the
techniques in Table I by using 10-fold cross-validation. We
measure the performance with respect to three metrics: (1)
Mean positioning error; (2) Standard deviation (STD) of
positioning errors; (3) Coefficient of determination R2, which
takes values on the interval [0, 1].

TABLE I
10-FoLD CROSS-VALIDATION PERFORMANCE RESULTS

Mean STD Coefficient of

Model Type Positioning of Determination
Error (cm) | Error (R?)
MLP Decomposition 7.68 9.38 0.98
MLP 8.98 9.29 0.98
Linear Regression 13.35 13.54 0.96
Ridge Regression 13.35 13.54 0.96
SVR-1 21.00 11.82 0.94
SVR-2 20.06 12.28 0.94
SVR-3 24.38 12.20 0.92
SVR-4 19.26 13.21 0.94
Least Squares Method 21.19 18.09 0.94

Mean Positioning Error with respect to Number of Epochs
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Fig. 2. Mean positioning error with respect to the number of epochs in
training the MLP Decomposition model.

In Fig. 2, we display the mean positioning error with respect
to the number of epochs in training the MLP Decomposition
architecture. We see that the mean positioning error decreases
until it reaches a cusp at 900 epochs, after which is remains
relatively constant until 1500 epochs. Thus, we have decided
to terminate training at 900 epochs.

Fig. 3 shows the Cumulative Distribution Function (CDF)
of the positioning error under the MLP Decomposition model.
We see that 48.03% of the positioning errors are within 5 cm;
84.94% are within 10 cm; and 98.03% are within 30 cm.

CDF of Positioning Error
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In Table II, first, we see that the MLP-based techniques
outperform Linear Regression, Ridge Regression, SVR and the
Least Squares Method significantly. Second, we see that the
MLP Decomposition architecture outperforms all of the other
techniques under examination (including the MLP) with re-
spect to the mean positioning error. Furthermore, the standard
deviation of the positioning error of the MLP Decomposition is
comparable to the one for the MLP and is among the lowest
two across all of the techniques. Finally, the R? coefficient
of the MLP Decomposition architecture achieves the highest
value among all of the techniques and is equal to only that of
the MLP.

In this table, we see that the MLP Decomposition improves
the mean positioning error from 8.98 cm to 7.68 cm, compared
with the MLP. Thus, not only is the MLP Decomposition
a modular architecture, but also it achieves a reduction in
mean positioning error of 14.5% with respect to that of the
MLP. This improvement is significant given the competitive
landscape of current indoor positioning techniques.

D. Detailed Results on the MLP Decomposition Architecture

In this section, we present more detailed results on the MLP
Decomposition architecture by focusing on a single test set.
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Fig. 3. The CDF of positioning error for MLP Decomposition model.

Finally, we note that for this particular test set, the training
time was 146 seconds (for 900 epochs) and the execution time
was 0.086 seconds for the MLP Decomposition architecture.
We also found that these values were representative of the
results across all of the test sets.

V. CONCLUSION

We have developed a novel Artificial Intelligence based
processing architecture, which we call the “Multi-Layer Per-
ceptron (MLP) Decomposition architecture”, for indoor po-
sitioning of mobile IoT devices. Our architecture takes the
positions of the anchors as well as the measured distance
between each anchor and the mobile IoT device as inputs and
produces the estimated position of the tag.



We have measured the performance of our architecture in
a demonstration in which ultra-wideband (UWB) is used as
the underlying technology by virtue of which the distance
to each anchor is measured. We have found that our MLP
Decomposition architecture outperforms all of the following
techniques in mean positioning error: MLP, Linear Regression,
Ridge Regression, Support Vector Regression, and the Least
Squares Method for indoor positioning. In particular, we have
found in our cross-validated results that our architecture re-
duces the positioning error by 14.5% with respect to the MLP,
which gives the second-best performance. This improvement
is significant given the current competitive landscape of indoor
positioning techniques.

While we have demonstrated our results only for UWB in
this paper, the processing architecture that we have developed
for indoor positioning is general and can be applied to any
positioning technology that provides a measurement of the
distance from the mobile IoT device to each anchor. Our
MLP Decomposition architecture holds promise for ultra-high-
precision next-generation indoor positioning of mobile IoT
devices in order to enable applications such as navigation,
proximity marketing, asset tracking, collision avoidance, and
social distancing.
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