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We show how to simulate the dynamics of many body quantum systems using Graphics 
Processing Units or a similar heterogeneous architecture. In particular, we focus on the one 
dimensional quantum Ising model. Its entire time evolution is computed in parallel. The 
dynamics of this model provides a valuable information regarding defects created during 
quantum annealing. Counting such imperfections comprise a perfect test for assessing 
correctness of adiabatic quantum computing (B. Gardas et al. (2017) [11]). A fast method 
to calculate topological defects even when some types of decoherence are present is 
described.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the number of possible quantum states increases exponentially with increasing number of parti-
cles [1]. That makes the dynamics of many body quantum systems almost impossible to simulate using classical comput-
ers [2]. In principle, only a general purpose quantum computer will be capable of performing this task [3]. However to 
build one, some aspects of its complex behavior have to be simulated classically. To this end, extremely efficient and highly 
parallelizable classical algorithms need to be devised [4].

As a small step towards this objective, we describe how modern Graphics Processing Units (GPUs) can help accomplish 
this goal. In particular, we focus on the one dimensional (1D) quantum Ising model whose Hamiltonian [5],

H(t) = −
L∑

n=1

hn(t)σ
x

n −
L−1∑
n=1

Jn(t)σ
z

n σ z
n+1, (1)

describes the nearest neighbor interaction between L qubits [6]. Its strength is set by time dependent functions Jn(t). The 
transverse magnetic field provides a bias and it is controlled by hn(t). Matrices σ x

n and σ z
n are the Pauli matrices along x

and z directions respectively [7].
There are at least two good reasons why this model is important. The first has to do with D-Wave quantum comput-

ers [8]. Those machines promise to solve optimization problems encoded via even more general interaction using the so 
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Fig. 1. 1D Ising model implemented on a D-Wave quantum computer. A random-walked implementation of the Hamiltonian (1) for L = 600 qubits (depicted 
as gray dots). Solid blue lines show active connections between sites. The inset shows a typical annealing protocol [i.e. functions h(t) and J (t)], ta is the 
so called annealing time – time necessary to complete one processor cycle. Green dotted lines show tangents at the critical point (depicted as a red dot). 
Units are such that h̄ = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

called the Chimera graph [9]. A typical implementation of the 1D case is shown in Fig. 1. The second reason concerns 
adiabatic quantum computations in general [10]. As recent studies have shown, the Ising dynamics provides a valuable 
information regarding topological defects created during quantum computation. Counting such imperfections comprise a 
perfect test for assessing correctness of adiabatic quantum computing [11].

In this article we demonstrate how the 1D Ising dynamics can be simulated effectively even if some types of decoherence 
are present. The entire time evolution is computed in parallel on a GPU or similar heterogeneous architecture. Moreover, 
a fast method to compute topological defects is provided.

2. Quantum dynamics

The dynamic of quantum systems is determined by solving for the density operator, a positive definite [ρ(t) > 0], her-
mitian [ρ(t)† = ρ(t)] and trace preserving [tr {ρ(t)} = 1] matrix [7]. We begin with a Lindblad master equation [12]

ρ̇(t) = −i [H(t),ρ(t)] − γ

2

L∑
n=1

[
σ z

n ,
[
σ z

n ,ρ(t)
]]

, (2)

which models the Ising dynamics in the presence of a special type of local decoherence [13]. A non-negative parameter γ
reflects on the coupling between the chain and its environment [14]. This particular equation attempts to model so called 
ghost spins. In a quantum computer some qubits may influence others (causing errors) even if the corresponding couplings 
between them are set to zero [11]. Note, γ = 0 implies unitary dynamics and hence the conservation of probabilities.

It is needless to say that in its current form Eq. (2) is too complicated to be solved directly. Note, here ρ(t) is of 
size 2L × 2L which is astronomical for long chains. To lower the complexity we first use the following Jordan–Wigner 
transformation [15]

σ z
n =

(
c†

n + cn

) ∏
m<n

(
1 − 2c†

mcm

)
, σ x

n = 1 − 2c†
ncn, (3)

where cn (c†
n) is a fermionic annihilation (creation) operator. In case of an open chain, the above transformation brings the 

Hamiltonian (1) to a quadratic form [5],

H = 2
L∑

hnc†
ncn −

L−1∑
Jn

(
c†

ncn+1 + c†
nc†

n+1 + h.c.
)

+ C, (4)

n=1 n=1
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where a constant C does not affect equations of motion [16]. Next, we introduce the following correlation functions

xp,q := tr
{
ρc†

pcq

}
, yp,q := tr

{
ρc†

pc†
q

}
. (5)

Taking into account that x is hermitian (i.e. x = x†) and y antisymmetric (i.e. y = −yT ) we arrive at a closed set of equations:

iẋp,q = − J p xp+1,q − J p−1 xp−1,q + Jq xp,q+1

+ Jq−1 xp,q−1 + Jq yp,q+1 − Jq−1 yp,q−1

+ J p y∗
p+1,q − J p−1 y∗

p−1,q

+ 2
(
hp − hq

)
xp,q + γD[xpq], q ≥ p,

(6)

where the Lindblad superoperator D[xpq] reads

D[xp,q] =
{

1 − 2xp,p if p = q,

2�(yp,q) − 2|q − p|xp,q if q > p,
(7)

and (note yp,p = 0 as y is antisymmetric)

i ẏp,q = − J p yp+1,q − J p−1 yp−1,q − Jq yp,q+1

− Jq−1 yp,q−1 − Jq xp,q+1 + Jq−1 xp,q−1

+ J p x∗
p+1,q − J p−1x∗

p−1,q − J p δp+1,q

+ 2(hp + hq)yp,q + γD[ypq], q > p,

(8)

where D[yp,q] = 2�(xp,q) − 2|q − p|yp,q .
These equations are to be solved with boundary conditions. For instance, when the chain is open then c0 = cL+1 = 0 [15]. 

Moreover, without any loss of generality, we assume the system to be in its ground state at the beginning. That it to say, 
the initial condition for (6)–(8) can be written down as

xp,q(t0) = 〈0| c†
pcq |0〉 , yp,q(t0) = 〈0| c†

pc†
q |0〉 . (9)

Above, |0〉 is the eigenvector corresponding to the smallest eigenvalue of the Hamiltonian (1) when J > 0. Finally, the 
number of topological defects reads [11]

defects = L − 1

2
−

L−1∑
p=1

� (
xp,p+1 + yp,p+1

)
. (10)

Note, (6)–(8) is a set of only L × L differential equations. In the next section we show how it can be solved in parallel on a 
GPU.

3. Parallel implementation

Among numerous programming languages Fortran is most widely used for numerical simulations [17]. From many high 
performance compilers for parallel computing we have chosen PGI Fortran [18]. It is the only fortran compiler that natively 
supports CUDA technology [19]. There are also plenty of highly optimized methods that could be used to solve ordinary 
differential equations, see e.g. [20]. Our solver consists of two kernels that are specifically tailored for the system (6)–(8). 
These two kernels embody the classical Runge–Kutta method [21,22] (RK4) in the form of a highly optimized low storage 
scheme proposed by Williamson [23]. Given the initial value problem,

ż = F(z, t), z(t0) = z0, (11)

his method consists of the following two steps, for the 4 values of s at each stage,

w(t + δt) = A(s)w(t) + δt F(z(t), t + C(s) δt), (12)

z(t + δt) = z(t) + B(s)w(t + δt), (13)

where A, B , C are found using the RK4 Butcher’s tableau [24,25]

A =

⎛
⎜⎜⎝

0
−11/15
−5/3
−1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1/3
5/6
3/5
1/4

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

0
3/9
5/9
8/9

⎞
⎟⎟⎠ . (14)



B. Gardas, A. Ptok / Journal of Computational Physics 366 (2018) 320–326 323
In our case, function F is defined as

F (z, p,q, t) =
{

ẋp,q if p ≥ q,

ẏp,q if p < q,
(15)

Algorithm 1 4th order Low-Storage Runge–Kutta.
1: set: t ← t0 and w ← 0
2: calculate initial state z0

3: for t ≤ Tend do
4: for s ≤ 4 do
5: w ← A(s)w + δt F(z, t + C(s) δt) – Eq. (12)
6: z ← z + B(s)w – Eq. (13)
7: end for
8: t ← t + δt
9: end for

10: calculate defects – Eq. (10)

where the respective derivatives are given in Eqs. (6)–(8). Note, a new variable z encapsulates both correlations functions, 
i.e.,

zp,q =
{

xp,q if p ≥ q,

yp,q if p < q.
(16)

Algorithm 1 sketches necessary steps to complete full time propagation in this scheme. Fortran subroutines that encode 
these steps are shown below. LSRK4_predict predicts the solution at time t + δt according to Eq. (12) and LSRK4_cor-
rect tries to correct it as dictated by Eq. (13). Within these subroutines, each CUDA thread (p, q) is defined on a two 
dimensional grid (see Fig. 2) and assigned a separate variable to calculate, zp,q ,

! Kernel 1: Low Storage RK4 predictor
attributes(global) subroutine LSRK4_predict(z,w,s,t)
! system size:
integer :: L, p, q
integer, intent(in), value :: s
real(wp), intent(in), value :: t
complex(wp), intent(in), device :: z(:,:)
complex(wp), intent(inout), device :: w(:,:)

L = size(z,1)
p = threadIdx%x + blockDim%x * (blockIdx%x-1)
q = threadIdx%y + blockDim%y * (blockIdx%y-1)
if ((p>L).or.(q>L)) return
w(p,q) = A(s) * w(p,q) + dt * F(z,p,q,t+C(s)*dt)

end subroutine LSRK4_predict
!===================================================
! Kernel 2: Low Storage RK4 corrector
attributes(global) subroutine LSRK4_correct(z,w,s)
integer :: L, p, q
integer, intent(in), value :: s
complex(wp), intent(in), device :: w(:,:)
complex(wp), intent(inout), device :: z(:,:)

L = SIZE(z,1)
p = threadIdx%x + blockDim%x * (blockIdx%x-1)
q = threadIdx%y + blockDim%y * (blockIdx%y-1)
if ((p>L).or.(q>L)) return
z(p,q) = z(p,q) + B(s) * w(p,q)

end subroutine LSRK4_correct

Note that a kernel is always called from a host program (CPU) and executed on the device (GPU). All variables declared with 
the value attribute are dynamically sent to a GPU, those having the device attributes resident on a GPU. We stress that 
only two matrices (z and w), each of size L × L, have to be allocated on a GPU. Moreover, there is no need to transfer them 
back and forth between host and device while executing the solver. In fact, only information regarding current stage, s, and 
time, t , have to be sent to the device at each iteration. The PGI compiler allows for seamless allocation and data transfer 
between GPU and CPU,
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Fig. 2. CUDA grid and threading blocks setup up for Algorithm 1. Each unique CUDA thread (p, q) is defined on a L × L grid and calculates zp,q according 
to Eqs. (12)–(13). The number of defects is then computed using Eq. (10).

allocate(z_cpu(L,L),z(L,L)) ! both CPU and GPU
call ground_state(z_cpu) ! compute on CPU
z = z_cpu ! sent to GPU

To take into account different boundary conditions (e.g. open or periodic) we define extra functions that can only be 
called from the device (i.e. device functions). For example, instead of working directly with z we can “hide” it behind a 
wrapper,

! Device: wraper for open boundary conditions
attributes(device) function X(z,p,q)
complex(wp) :: X=0.
integer, intent(in) :: p, q
complex(wp), intent(in), device :: z(:,:)

if ((p==0).or.(q==SIZE(z,1)+1)) return
X = z(p,q)

end function X

that takes care of an array index out of bounds error. In a similar fashion one can accommodate any extra constrain, e.g.
yp,p = 0.

LSRK4_predict and LSRK4_correct are invoked as follows

! main loop
call cpu_time(tic) ! start timer
do while (t<=time_end)

do s=1,4 ! global sync on return
call LSRK4_predict<<<bGrid,tBlock>>>(z,w,s,t)
call LSRK4_correct<<<bGrid,tBlock>>>(z,w,s)

end do
t = t + dt

end do
istat = cudaDeviceSynchronize()
call cpu_time(toc) ! stop timer

The function cudaDeviceSynchronize() assures that all previous CUDA calls are completed. This is necessary to cor-
rectly measure the execution time, toc-tic [18]. The two variables: bGrid and tBlock specify the number of blocks per 
grid and the number of threads per block, respectively. They can be setup up easily using a derived data type dim3,

! CUDA launch parameters
tBlock = dim3(16,16,1)
bGrid = dim3(ceiling(real(L)/tBlock%x),&

ceiling(real(L)/tBlock%y),1)

For the range of physical parameters that we used in our simulations blocks of 16 ×16 threads yielded the best performance.
At this point one may be tempted to combine LSRK4_predict and LSRK4_correct into one compact kernel, say

LSRK4, e.g.
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if ((p<=L).and.(q<=L)) then
y(p,q) = A(s) * y(p,q) + dt * F(z,p,q,t+C(s)*dt)
! Global synchronization necessary
z(p,q) = z(p,q) + B(s) * y(p,q)

end if

However, for this code to work a global communication between threads would need to be established. Note, a parallel 
update of z interferes with the preceding line where w is being modified. Unfortunately, current CUDA technology allows 
to synchronize threads globally from within a kernel only on its exit [26]. Hence, the need for two separate kernels for 
each time step. Obviously, this is a very costly solution due to the overhead accumulation. However, the next generation 
of graphics cards (Volta GPU architecture) will support more flexible cooperation and synchronization between threads 
allowing for more efficient approach [27].

It is also worth emphasizing that with only a slight modification our code could also benefit from different parallelization 
libraries such as OpenMP or MPI [28]. For instance, to allow LSRK4_predict to take advantage of multiprocessing one 
would only need to distribute tasks between available cores. This can be done at no extra effort. For instance,

! Using OpenMP to distribute work between threads
!$omp parallel do default(shared)
do p=1,L
do q=1,L

y(p,q) = A(s) * y(p,q) + dt * F(z,p,q,t+C(s)*dt)
end do

end do
!$omp end parallel do

The number of defects, Eq. (10), can either be computed on a CPU or GPU. To use the latter, a parallel reduction is 
required. This does not pose a big problem as modern compilers can perform it very efficiently [29]. In fact, this is straight-
forward with CUDA Fortran as the entire reduction algorithm can be carried out using the function sum(). Reduction on 
the host, on the other hand, requires data transfer. Fortunately, only two vectors of size L each. Moreover, a CPU can also 
perform a parallel reduction operation with both OpenMP or MPI.

4. Results

To quantify the advantage gained from using CUDA we define the speedup, S , as a ratio of the CPU to GPU time spent 
to execute a given portion of code (e.g. the main loop). That is,

S = Tcpu

Tgpu
. (17)

Without any loss of generality we assume

J p(t) = 1, hp(t) = 1 − t/τQ , −τQ ≤ t ≤ τQ (18)

that corresponds to a typical quantum annealing [30]. As can be seen in Fig. 3 the GPU used is over two orders of magnitude 
faster that a single CPU, for both numerical precisions. Nevertheless, adding more CPU’s closes that gap. However, given that 
the number of available cores on a single CPU is very limited, a GPU is a better choice from a desktop user perspective.

The speedup S depicted in Fig. 3 does not take into account neither the initial (final) data transfer nor the total time 
needed to compute the initial condition z0. For the system sizes that we have considered data transfer is negligible. In our 
calculations the system evolved from its ground state which was partially calculated on a GPU. Our analysis shows that 
89% of the time a GPU spends evaluating LSRK4_predict, another 10% executing LSRK4_correct. The remaining 1%
is used to compute the ground state and initial necessary variables.

5. Summary

We have devised a simple yet powerful technique to simulate the one dimensional quantum Ising model using Graphics 
Processing Units. Our method is based on a highly optimized low storage classical Runge–Kutta method. It runs in parallel
on a GPU and can easily be adapted for a similar heterogeneous architecture. A computer code that we implemented with 
the PGI CUDA Fortran compiler shows that a typical GPU is over two orders of magnitude faster that a single CPU core.

As has been show recently, counting topological defects in the Ising chain can be used to benchmark quantum com-
puters [11]. In this paper we have shown how the imperfection resulting from quantum annealing can be calculated using
parallel reduction in CUDA.
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Fig. 3. CPU v. GPU. Comparison between CPU (i7-6950X with 10 cores) and GPU (GeForce GTX 1080 with 2560 CUDA cores) executing Algorithm 1 for 
different systems sizes L. Speedup S defined in Eq. (17) was determined using the intrinsic fortran function cpu_time. Red (blue) line shows the gain 
with respect to a singe CPU (10 CPUs running in parallel). Solid (dashed) lines refer to single (double) precision. Physical parameters used: τQ = 1.0, 
δt = 0.01 and γ = 0.01 [see Eq. (18)].
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