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 A B S T R A C T

Federated Learning (FL) is a distributed machine learning framework that enables the collaborative training of 
machine learning models by multiple entities. However, FL is vulnerable to various potential risks, especially 
backdoor attacks. A backdoor attack aims to implant hidden backdoors into a global model by compromising 
one or more clients and making them provide poisoned model updates. Consequently, the global model 
misclassifies inputs with triggers as adversary-desired classes/labels while performing well on benign inputs. 
Despite its severity, existing literature lacks a comprehensive review on backdoor attacks and their defense 
mechanisms of FL, especially for vertical FL. This paper comprehensively reviews and evaluates recent advances 
in backdoor attacks and defense mechanisms on FL. We first introduce foundational concepts about FL, 
backdoor attacks, and defense mechanisms, along with their respective security models. Then, we propose two 
sets of evaluation criteria that a sound backdoor attack and a defense mechanism should meet, respectively. 
After that, we provide taxonomies of existing backdoor attacks and defense mechanisms of FL and review them 
by employing the proposed criteria to evaluate their pros and cons. We also explore a positive application of 
backdoors in FL, i.e., backdoor-based watermarking. Finally, we discuss a number of open issues and suggest 
promising future research directions.
. Introduction

Advances in machine learning (ML) have enabled machines to 
chieve high levels of performance in various tasks, such as image 
ecognition [1–3], natural language processing [4–6], and time series 
orecasting [7–9], based on substantial amounts of high-quality data. 
raditional centralized ML requires collecting vast amounts of data 
rom entities such as user devices, companies, and institutions, to train 
he ML models, while concerns over data privacy impede the sharing 
f the training data among different entities. This has motivated the 
evelopment of Federated Learning (FL) [10]. FL is a distributed ML 
ramework that allows clients to collaborate on model training by 
roviding model updates to a central server instead of sharing raw data, 
hereby preserving data privacy during collaborative training. In recent 
ears, the numerous advantages of FL have driven its widespread adop-
ion across various domains, including industrial engineering [11,12], 
ealthcare [13–16] and wireless communications [17–19].
Nevertheless, the distributed nature of FL introduces new attack 

urfaces due to untrusted or malicious clients. A typical threat is an 
L Backdoor Attack (FLBA) that introduces hidden backdoors into 
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the global model by compromising one or more training clients to 
provide poisoned model updates. The poisoned global model misclas-
sifies malicious inputs as specific classes desired by an adversary, 
while performing correctly on benign inputs. An example of an FLBA 
targeting traffic sign recognition is presented in Section 2.2. FLBAs are 
characterized by their stealthiness and harmfulness. On the one hand, 
the invisible nature of a malicious client’s local training process to 
other participants makes such attacks difficult to detect. On the other 
hand, the compromised model performs well on normal tasks, but once 
the backdoor is triggered, it can produce critical errors. In particular, 
FLBAs deployed in safety-critical applications, such as finance and 
healthcare, could result in significant societal harm. To protect FL from 
such attacks, a variety of FL Backdoor Defenses (FLBDs) have been 
proposed to detect or mitigate FLBAs. Fig.  1 presents the development 
timeline of FLBAs, FLBDs, and backdoor-based watermarking methods 
in FL. Backdoor attacks were first introduced into FL in 2018, soon 
followed by the emergence of defense mechanisms and backdoor-
based watermarking methods against FL. Since then, these topics have 
attracted considerable attention, with a surge of research emerging, 
especially in the past three years.
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Fig. 1. A Timeline of FLBAs and FLBDs.
Table 1
Comparison of our survey with other existing surveys.
Ref Year Security Model Criteria Taxonomy FLBAs Review FLBDs Review

HFL-BAs VFL-BAs Positive Applications HFL-BDs VFL-BDs

[20] 2022
[21] 2022
[22] 2023
[23] 2024
[27] 2024
[25] 2023
[24] 2023
[26] 2024
Ours 2025

: Fully supported; : Partially supported; : Not supported; FLBAs: Backdoor Attacks against FL; HFLBAs: Backdoor Attacks against Horizontal 
FL; VFLBAs: Backdoor Attacks against Vertical FL; FLBDs: Backdoor Defenses against FL; HFLBD: Backdoor Defenses against Horizontal FL; VFLBD: 
Backdoor Defenses against Vertical FL;  : Studies focusing on adversarial attacks and defenses in FL. : Studies focusing on backdoor attacks 
and defenses in Wireless FL.  : Studies focusing on backdoor attacks and defenses in FL.
There are several surveys [20–27] of the literature about FLBAs 
and FLBDs. In  [20–23] extensive surveys on adversarial attacks and 
defense mechanisms against FL can be found, including a discussion 
of FLBAs and FLBDs. However, these studies just provide a general 
discussion of adversarial attacks against FL and defenses, such as 
adversarial examples, poisoning attacks, and FLBAs without focusing 
on each specific type of attack. On the other hand, Wan et al. [27] 
focus narrowly on backdoor attacks and defense mechanisms within 
wireless FL, overlooking backdoor attacks and defense mechanisms 
for Vertical FL. Additionally, they do not define a defense model 
and discuss the various knowledge required for defense. Other sur-
veys [24–26] are highly relevant to our paper, but the defense model 
of FLBDs is not studied. Specifically, the literatures [25,26] lack a 
detailed description of the defense model and the literature [24] does 
not introduce the threat model of FLBAs and the defense model of 
FLBDs. Moreover, they conduct a comprehensive review on Backdoor 
Attacks against Horizontal Federated Learning (HFLBAs) and Backdoor 
Defenses against Horizontal Federated Learning (HFLBDs), but over-
look relevant research on Vertical Federated Learning (VFL). Among 
them, literature [26] only addresses several backdoor attacks against 
one specific VFL architecture, without exploring other architectures 
and defense mechanisms in VFL. In particular, they focus solely on 
the malicious applications of backdoors in FL, without discussing the 
potential positive applications of backdoors. Table  1 presents a detailed 
comparison between our survey and related surveys.

In this paper, we perform a thorough review on both FLBAs and 
FLBDs. Specifically, we first introduce the basic knowledge of FL, 
backdoor attacks, and defense mechanisms, along with the security 

models of FLBAs and FLBDs, including a threat model and a defense 

2 
model. Second, we propose two sets of evaluation criteria regard-
ing FLBAs and FLBDs, respectively, focusing on their effectiveness, 
robustness, practicality, and efficiency. Third, we categorize FLBAs 
and FLBDs into the ones targeting at HFL and the ones targeting 
at VFL, respectively. The categorization is further refined according 
to implementation approaches. Subsequently, we comprehensively re-
view existing studies following the proposed taxonomies and analyze 
their pros and cons by employing the proposed evaluation metrics. In 
addition to the malicious applications of backdoors, backdoor-based 
watermarking methods that are potential positive backdoor applica-
tions are discussed. In the end, we shed light on several open issues 
and suggest future research directions. We intend to help researchers 
and developers capture the recent advances, open issues, and future 
research directions of FLBAs and FLBDs. To summarize, the main 
contributions of this paper are as follows:

• We propose two sets of evaluation criteria that should be met by 
sound FLBAs and effective FLBDs, respectively, followed by two 
taxonomies of FLBAs and FLBDs, respectively.

• We conduct a comprehensive review on existing FLBAs and FLBDs 
following their taxonomies by employing the proposed evaluation 
criteria to analyze their pros and cons. Additionally, we explore 
backdoor-based watermarking methods in FL.

• We point out several open issues derived from our serious survey 
and further propose future research directions to promote the 
development of trustworthy FL.

The remainder of this survey is organized as follows. In the next 
section, we introduce FL, including its categories and processes, an 

overview of backdoor attacks and defense mechanisms, as well as the 
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Fig. 2. The different data distributions of HFL, VFL, and FTL.
threat model of FLBAs and the defense model of FLBDs. Section 3 
presents two sets of criteria for evaluating the performance of FLBAs 
and FLBDs, respectively. In Section 4, we provide a taxonomy of FLBAs, 
followed by a thorough review on FLBAs and a discussion on backdoor-
based watermarking methods in FL. In Section 5, the taxonomy of 
FLBDs is proposed, followed by a comprehensive review on FLBDs. On 
the basis of the literature review, we identify open issues and point out 
future research directions in Section 6. Finally, we draw a conclusion 
in the last section.

2. Background

In this section, we briefly introduce FL, including its categories and 
processes, provide a brief overview on backdoor attacks and defenses, 
and introduce their threat models and defense models, respectively.

2.1. Federated learning

FL is a distributed machine learning framework that allows clients 
to collaborate on model training by providing model updates, such 
as parameters, gradients, and intermediate layer outputs, to a central 
server instead of sharing raw data, thereby preserving data privacy. 
Furthermore, FL allows a variety of clients to contribute, even if their 
local data is non-Independent and Identically Distributed (non-IID), 
which helps to collaboratively train a general global model. Overall, FL 
provides a significant advancement in the field of machine learning by 
enabling privacy-preserving collaboration among diverse participants, 
leading to robust and general models.

As a flexible framework, FL is often integrated with other learning 
paradigms to safeguard data privacy in various learning scenarios. For 
example, federated semi-supervised learning [28] integrates FL with 
semi-supervised learning [29], allowing multiple clients to leverage 
unlabeled data for learning without exposing data privacy. Similarly, 
federated edge learning [30] incorporates FL with mobile edge com-
puting [31], effectively reducing communication latency between de-
vices while preserving data privacy. Beyond these, emerging paradigms 
such as federated reinforcement learning [32] and federated meta-
learning [33] continue to expand the scope of FL applications. It is 
worth mentioning that this paper primarily focuses on FL as a whole 
rather than on a specific cross-learning scenario. 

2.1.1. Categories of FL
Based on the distribution characteristics of participants’ local data, 

FL can be categorized into Horizontal Federated Learning (HFL), Verti-
cal Federated Learning (VFL), and Federated Transfer Learning (FTL), 
as shown in Fig.  2.

(1) Horizontal Federated Learning (HFL) applies to such scenarios 
where participants’ local data share the same features but have different 
sample IDentifiers (IDs). It enhances the performance of a global model 
by extending the training dataset. For example, multiple banks in differ-
ent regions, despite having similar business operations, serve different 
customers. By employing HFL, these banks can collaboratively train a 
highly effective financial model. HFL is currently the most prevalent 
type of FL.
3 
(2) Vertical Federated Learning (VFL) is applicable in such sce-
narios where participants’ local data share the same sample IDs but 
have different features. VFL enhances the performance and generaliza-
tion ability of a global model by extending the feature dimensions of a 
training dataset. For instance, a bank and an e-commerce company in 
the same region respectively process the financial status and shopping 
records of customers in that region. They can collaboratively train a 
product recommendation model via VFL. Currently, two popular VFL 
architectures have been proposed [34], namely AggVFL and SplitVFL. A 
detailed introduction to these architectures is provided in Section 2.1.2.

(3) Federated Transfer Learning (FTL) applies to such scenarios 
where participants’ local data share few sample IDs and features. FTL 
enhances the performance of a target participant’s model by leveraging 
the learning experiences of other participants. For instance, a bank and 
an e-commerce company in different regions not only have distinct 
business operations but also serve different customers. The e-commerce 
company can train a recommendation model based on the shopping 
records of its users, while the bank may struggle to train a recom-
mendation model for its financial products due to insufficient data. By 
employing FTL, the bank can train an effective recommendation model 
by transferring the e-commerce company’s learning experience.

2.1.2. FL process
To the best of our knowledge, there is currently no research on back-

door attacks and defenses against FTL, thus we focus on introducing 
the processes of HFL and VFL in this subsection. HFL and VFL typically 
consist of a central server and numerous clients. Fig.  3 illustrates the 
processes of HFL and VFL (including AggVFL and SplitVFL).

(1) HFL: In HFL, each client processes its local data, including 
samples and labels. The server is responsible for aggregating updates 
provided by clients and distributing the aggregated updates, without 
performing model training itself. The purpose of HFL is to enable 
clients to collaboratively train a global model that can be independently 
deployed on each client. The process of HFL involves repeating the 
following four steps until either the global model converges or a 
predefined number of iterations is reached.

¬ Client Selection and Distribution: The server selects a subset 
of clients to participate in the current round of training and distributes 
the global model parameters [35] or gradients [36] to them.

­ Local Training: Upon receiving the global model parameters or 
gradients, each selected client utilizes them along with its local data to 
retrain its local model.

® Updates Uploading: Each selected client uploads its local model 
parameters or gradients to the server.

¯ Central Computation: The server aggregates the local model 
parameters or gradients provided by the selected clients and initiates a 
new round of training.

(2) VFL: In VFL, each client (referred to as a passive party) processes 
a subset of data features without labels, while the server (referred to 
as an active party) holds the labels, in some cases, additional data 
features. The active party initiates FL tasks and plays a dominant role in 
both training and prediction. Passive parties contribute data features to 
enhance model performance. Collaboration between the active and pas-
sive parties is essential for both model training and inference, as neither 
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Fig. 3. A schematic diagram of the FL process with two clients and one server under different FL architectures. ‘X’ denotes samples and ‘Y’ denotes labels. ¬: Client Selection and 
Distribution; ­: Local Training; ®: Updates Uploading; ̄ : Central Computation.
Fig. 4. An example of a backdoor attack.
party can independently complete these tasks. Furthermore, VFL can 
be further divided into two architectures: AggVFL and SplitVFL. Their 
processes are similar to that of HFL, with slight differences. The key 
difference between AggVFL and SplitVFL is whether the active party 
possesses a trainable model [34].

AggVFL: In AggVFL, each party’s local model calculates the logits of 
local data and uploads them to the active party. The active party aggre-
gates the logits provided by all parties and calculates loss and gradients 
based on labels. The active party then distributes the gradients to each 
passive party, facilitating local model training.

SpliteVFL: In SplitVFL, based on the concept of split learning [37], 
an entire model is divided into multiple bottom models and a top 
model. Each passive party maintains a bottom model, while the ac-
tive party holds the top model. Initially, the bottom model of each 
passive party calculates intermediate representations (also known as 
embeddings) for local data and uploads them to the active party. 
The active party then aggregates the embeddings provided by passive 
parties and trains the top model using these embeddings along with the 
labels. Gradients from the first layer of the top model are subsequently 
distributed to each passive party to update and train their respective 
bottom models.

2.2. Backdoor attacks

A backdoor attack aims to implant one or more hidden backdoors 
into a model so that the poisoned model performs well on benign 
inputs but misclassifies poisoned inputs (i.e., inputs with triggers) as 
an adversary-desired class. The first backdoor attack, named BadNets, 
was introduced in the image classification task by Gu et al. [38] in 
2018. BadNets implants backdoors into the model via poisoning its 
dataset and consists of three stages: setting, training, and inference, 
as illustrated in Fig.  4. First, an adversary selects an adversary-desired 
target label (e.g., ‘‘speed limit’’) and designs a trigger pattern (e.g., a 
4 
yellow square positioned in the bottom-right corner). Next, the ad-
versary embeds the trigger into a subset of benign training images 
and modifies their label to the target label. During training on the 
modified dataset, a backdoor is covertly implanted into the model. 
Once deployed for traffic sign recognition, the poisoned model performs 
accurately on benign signs but misclassifies any sign with the trigger 
as "speed limit’’. This vulnerability poses a significant threat to traffic 
safety.

Backdoor attacks have attracted significant attention since the intro-
duction of BadNets, leading to substantial advancements. For instance, 
to enhance the stealthiness of backdoor attacks, previous studies have 
focused on designing invisible triggers [39–41] or label-consistent back-
door attacks [42,43]. Label-consistent attacks ensure that the content 
of a sample aligns with its label, thereby enhancing their stealthiness. 
Meanwhile, the effectiveness of backdoor attacks has been signifi-
cantly improved through various approaches, such as trigger optimiza-
tion [44–46] and direct modification of model parameters [47–49]. 
Moreover, backdoor attacks have been effectively extended to vari-
ous domains, including natural language processing [50–52], speech 
recognition [53–55], video recognition [56–58], semi-supervised learn-
ing [59,60] and so on.

Although backdoors were initially designed for malicious attacks, 
researchers have discovered that they can be used positively, such as 
adversarial example detection [61], evaluation of explanation meth-
ods [62], and dataset/model ownership verification [63–65]. Among 
these applications, dataset/model ownership verification is particu-
larly significant due to the growing urgency of protecting intellectual 
property rights for datasets and models. Dataset/model ownership veri-
fication is implemented by backdoor-based watermarking. Fig.  5 shows 
an application example of dataset ownership verification, which con-
sists of two stages: watermark embedding and ownership verification. 
In the watermark embedding stage, a dataset owner creates a poisoned 
dataset by embedding a trigger into a subset of samples. Thus, any 
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Fig. 5. An example of a backdoor-based watermarking method.
Fig. 6. Examples of an HFLBA and a VFLBA. In these examples, FL consists of two clients and one server, with client B serving as the malicious client. In the VFLBA, each of the 
two clients holds half of the features of the samples (the non-transparent parts in Fig. (b)), while the server holds the labels.
model trained on the poisoned dataset is unintentionally watermarked 
during training. In the ownership verification stage, a verifier inputs 
samples with triggers into a target suspicious model. If the model’s 
output matches the predefined label specified by the dataset owner, 
it indicates that the intellectual property rights of the dataset owner 
have been infringed. Notably, the model ownership verification process 
follows a similar approach.

Except for centralized learning, backdoor attacks have been intro-
duced into FL in recent years. Numerous studies have suggested that 
FL is susceptible to backdoor attacks due to the difficulty in ensuring 
that every participant is trusted [66–69]. In FL, an adversary can 
implant hidden backdoors into the global model by compromising 
one or more clients, known as malicious clients, and making them 
provide poisoned model updates to the server during the training 
phase. Consequently, during the inference phase, the global model 
misclassifies poisoned inputs as specific classes, while performing well 
on benign inputs.  For instance, as illustrated in Fig.  6, an adversary 
compromises a client and launches a backdoor attack. In an HFLBA, 
the adversary poisons random samples and assigns them target labels, 
while in a VFLBA, the adversary only poisons the target-label samples 
due to the inaccessibility of sample labels. Subsequently, in an HFLBA, 
the adversary trains a poisoned local model, while in a VFLBA, the 
adversary trains the bottom model to obtain poisoned intermediate 
representations. During server-side aggregation of model updates or 
intermediate representations from clients, the backdoor embedded in 
the poisoned local model is covertly transferred to the global model. 
Consequently, backdoor attacks pose a serious threat to the security of 
FL.
5 
2.3. Backdoor defenses

To mitigate the threat of backdoor attacks, various backdoor de-
fenses have been proposed. Current backdoor defenses can be divided 
into backdoor detection methods and removal methods [70–72]. Back-
door detection aims to determine whether an input or model has 
been compromised. Previous studies identify backdoors by analyzing 
deviations of inputs in the feature space [73–75] or by detecting 
prediction anomalies on test inputs [76]. Additionally, reverse engi-
neering techniques are used to reconstruct the trigger and identify the 
target label of the backdoor attack [77–79], with Neural Cleanse [77] 
being a representative work. Backdoor removal focuses on erasing 
the backdoors within a model while preserving its performance on 
benign inputs. Previous studies fine-tune the model using clean inputs 
to conduct backdoor removal, with representative studies including 
Fine-Pruning [80] and Neural Attention Distillation [81]. Additionally, 
some studies try to train a benign model on compromised inputs via 
adjusting the model’s training process, such as Adversarial Unlearn-
ing of Backdoors via Implicit Hypergradient [82] and Anti-Backdoor 
Learning [83].

While the above-mentioned defenses perform well in centralized 
learning, transferring them to FL scenarios faces the following chal-
lenges. First, in FL, the defender lacks full access to the training 
data and the entire model training process, rendering defense mecha-
nisms that require comprehensive knowledge ineffective. Second, each 
client’s local data may be non-IID, which can undermine the effec-
tiveness of defense mechanisms, particularly those based on anomaly 
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Fig. 7. Summary of Threat and the Defense models.
detection. Third, FL typically operates under limited communication 
and computational resources, restricting the application of defense 
mechanisms that entail significant overhead.

2.4. Threat and defense models

In this subsection, we introduce the threat model applied by FLBAs 
and the defense model used in FLBDs, which should be made clear 
when launching FLBAs and defending them, respectively. Fig.  7 summa-
rizes the goal, knowledge, and capability of the threat and the defense 
models.

2.4.1. Threat model
Existing FLBAs typically assume an adversary capable of compro-

mising one or more clients but lacking control over the server. In 
this paper, we discuss the threat model from three aspects: adversarial 
goals, knowledge, and capability, under this assumption.

Adversary Goals. In an FLBA, an adversary aims to implant hid-
den backdoors into a global model via manipulating malicious model 
updates. Consequently, the global model accurately classifies benign 
inputs, whereas poisoned inputs with triggers are assigned to a target 
class.

Adversary Knowledge. Existing FLBAs typically assume either a 
regular adversary or a powerful adversary, depending on the knowl-
edge possessed by the adversary.

A regular adversary has full knowledge of malicious clients, includ-
ing their local data, local training process, and local model parameters.

A powerful adversary also has full knowledge of malicious clients, 
and additionally, it processes extra knowledge, such as extra datasets
[68,84,85] and the number of clients [66].

Adversary Capability. The adversary can manipulate and modify 
the local data and local models of the malicious clients based on its 
knowledge. Beyond this, it cannot do anything. Additionally, if the 
adversary controls multiple malicious clients, it can conduct collusion 
and non-collusion attacks.

Non-collusion Attack: In a non-collusion attack, each malicious client 
performs a backdoor task independently, unaware of the existence of 
other malicious clients.

Collusion Attack: In a collusion attack, malicious clients share their 
local data and models to collaboratively execute a backdoor task. 
Although this requires a more capable adversary than a non-collusion 
attack, it tends to be more effective and stealthy.
6 
2.4.2. Defense model
In FL, the server is typically regarded as a trusted entity. Conse-

quently, existing FLBDs assume that the server implements defense 
mechanisms and acts as a defender. The following discussion on defense 
models is based on this assumption and encompasses defender goals, 
knowledge, and capability.

Defender Goals. In an FLBD, a defender aims to prevent the im-
plantation of backdoors into a global model or to detect and eliminate 
existing backdoors, while maintaining the global model’s performance 
on benign inputs.

Defender Knowledge. Existing FLBDs typically assume a regular or 
powerful defender, according to the defender knowledge.

A regular defender has comprehensive knowledge of the server, such 
as the global model, the local model updates submitted by clients, and 
the aggregation process.

A powerful defender processes not only full knowledge of the server 
but also extra information, such as extra training datasets [69,86,87] 
or model training processes of trusted clients [88].

Defender Capability. The defender can manipulate and modify the 
knowledge in its possession, but cannot take any further action.

3. Evaluation criteria

In this section, we propose two sets of evaluation criteria for FLBAs 
and FLBDs, respectively, as shown in Fig.  8. Note that these two sets of 
evaluation criteria are summarized from existing studies with essential 
extension and justification.

3.1. Evaluation criteria for FLBAs

We propose a set of evaluation criteria for FLBAs in terms of four 
aspects: effectiveness, robustness, practicality, and efficiency.

3.1.1. Effectiveness
Effectiveness measures the attack performance of FLBAs. An effec-

tive FLBA allows a poisoned global model to perform well on benign 
inputs while misclassifying poisoned ones. Two metrics are employed 
to assess the effectiveness of FLBAs.

Attack Success Rate:  It stands as an intuitive metric to evaluate 
the effectiveness of a backdoor attack. It is the probability that a 
backdoored model identifies a poisoned input as a target class, with 
values ranging from 0 to 1. A higher attack success rate indicates 
greater attack effectiveness. Some studies use alternative terms, such 
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Fig. 8. Evaluation Criteria of FLBAs and FLBDs.
as backdoor accuracy [66,89–91] to express a similar concept to attack 
success rate.

Main Task Accuracy:  It represents the accuracy of a global model 
on benign inputs. Existing studies typically measure the change in main 
task accuracy before and after the application of an FLBA to assess its 
impact on the main task. If an FLBA causes a significant decrease in 
main task accuracy, users may refrain from using the global model, 
leading to attack failure. Therefore, an effective FLBA should minimize 
the drop in the global model’s main task accuracy or even cause it to 
increase. Additionally, alternative terms, such as benign accuracy [90–
92], clean data accuracy [84], and testing accuracy [87,93,94], are 
used in some studies to convey a similar concept to main task accuracy.

3.1.2. Robustness
As FL evolves, FL systems typically employ various defense mech-

anisms to mitigate potential threats. Therefore, a sound FLBA should 
ensure that the poisoned model updates provided by the malicious 
clients are imperceptible to the defender, and bypass as many defense 
mechanisms as possible. Based on this perspective, we propose the 
following two criteria to assess the robustness of FLBAs.

Attack Imperceptibility: It indicates the ability of an FLBA to 
remain similar between poisoned and benign model updates. An FLBA 
that exhibits attack imperceptibility is more likely to bypass defense 
mechanisms compared to one that does not. In HFLBAs, modifying the 
loss function or directly constraining poisoned model updates are com-
mon methods for achieving attack imperceptibility. VFLBAs typically 
constrain poisoned intermediate representations directly.

Defense Resilience: It refers to the ability of an FLBA to circum-
vent defense mechanisms, encompassing not only backdoor defense 
mechanisms tailored for backdoor attacks but also robust aggregation 
algorithms. The more advanced and numerous defense mechanisms an 
FLBA can withstand, the more resilient and damaging it becomes.

3.1.3. Practicality
Practicality reflects the ability of an FLBA to be used in practical 

scenarios. A practical FLBA should be capable of achieving superior 
and durable attack performance on the global model, even in real-world 
scenarios with limited attack opportunities. We propose the following 
two criteria to evaluate the practicality of FLBAs.

Attack Dynamicity: It refers to an FLBA’s capability to optimize 
the trigger or adapt its attack strategy dynamically according to the 
global model’s state. For example, in dynamic FLBAs, if an adversary 
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discovers that the trigger or its attack strategy is ineffective in im-
planting backdoors into the current global model, the adversary may 
dynamically optimize the trigger or adapt the attack strategy (e.g., by 
scaling poisoned model updates) to achieve optimal attack performance 
(i.e., high attack success rate along with high main task accuracy) in 
each round. In contrast, static attacks focus exclusively on implanting 
backdoors into local models without considering their impact on the 
global model. Consequently, due to its dynamic adaption to the global 
model, a dynamic FLBA can achieve optimal performance, which is not 
the case for a static attack [95].

Backdoor Durability: It reflects the ability of a backdoor to remain 
in the global model durably. When malicious clients cease providing 
poisoned model updates, the backdoor in the global model is gradually 
diluted by benign model updates as training and aggregation proceed, 
resulting in the forgetting of the backdoor. An FLBA that satisfies 
backdoor durability causes the implanted backdoor to be retained for a 
considerable number of rounds, maintaining stable attack performance 
even after the attack stops, which is crucial in scenarios with limited 
attack opportunities. In contrast, if the FLBA does not meet the back-
door durability, the global model gradually ceases to exhibit backdoor 
behavior once the attack is halted. Following previous studies [91,95], 
we use Neurotoxin [90] as a benchmark: FLBAs with a slower backdoor 
forgetting speed than Neurotoxin are considered durable, while those 
with a faster forgetting speed are considered non-durable.

3.1.4. Efficiency
Efficiency reflects the time and resource cost required for an FLBA 

to be deployed. An efficient FLBA is undoubtedly easier to be launched 
and more damaging than an inefficient one. By analyzing previous 
studies, we identify three primary cost factors for an FLBA: data poison-
ing, model poisoning, and extra computation (e.g., optimizing triggers 
or model retraining). Consequently, we categorize FLBAs as follows: 
FLBAs with only data poisoning are highly efficient ; FLBAs with both 
data poisoning and model poisoning or data poisoning and extra com-
putation are moderately efficient ; and FLBAs with data poisoning, model 
poisoning, and extra computation are low efficient.

3.2. Evaluation criteria for FLBDs

We propose a set of evaluation criteria for FLBDs also in terms of 
effectiveness, robustness, practicality, and efficiency.
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Fig. 9. Taxonomy of FLBAs.
3.2.1. Effectiveness
Effectiveness measures the defense performance of FLBDs. A sound 

FLBD should reliably detect and eliminate existing backdoors or pre-
vent the implantation of backdoors into a global model, without de-
grading the local model’s performance on benign inputs. The following 
three metrics are proposed to assess the effectiveness of FLBDs.

Detection Rate: It measures the accuracy of an FLBD in detect-
ing compromised local models. It is a direct metric for assessing the 
effectiveness of an FLBD, ranging from 0 to 1, with higher values 
indicating better performance. In addition to detection rate, other 
metrics are widely used to directly evaluate the effectiveness of an 
FLBD, including but not limited to True Negative Rate (TNR), True 
Positive Rate (TPR), False Negative Rate (FNR), False Positive Rate 
(FPR), Positive Predictive Value (PPV), and Negative Predictive Value 
(NPV) [96].

Attack Success Rate: It is an intuitive metric for evaluating the 
effectiveness of an FLBA, with its definition presented in Section 3.1.1. 
Some studies assess the effectiveness of an FLBD by measuring the 
change in attack success rate before and after the FLBD is applied. A 
greater decrease in attack success rate indicates a more effective FLBD.

Main Task Accuracy: It demonstrates the accuracy of a global 
model on benign inputs, as presented in Section 3.1.1. The change 
in main task accuracy before and after an FLBD is employed can be 
used to assess its impact on the main task. If an FLBD severely reduces 
the global model’s main task accuracy, it cannot be widely adopted. 
Therefore, a sound FLBD should not compromise the global model’s 
main task accuracy.

3.2.2. Robustness
As research progresses, a growing number of FLBAs have been 

proposed, including potent adaptive attacks. Therefore, a robust FLBD 
should be capable of resisting these attacks. From this perspective, we 
propose the following two criteria to evaluate the robustness of an 
FLBD.

Attack Resilience: It refers to the ability of an FLBD to defend 
against various FLBAs. The more advanced and numerous FLBAs an 
FLBD can withstand, the more robust it is.

Adaptive Attack Resilience: It reflects the ability of an FLBD 
to resist adaptive attacks. These attacks can adaptively adjust their 
strategies based on the FLBDs they encounter. Specifically, in adaptive 
attacks, the adversary detects the defense mechanisms deployed on 
the server and sets bypassing these defenses as an additional goal 
of backdoor attacks. Consequently, defending against such attacks is 
challenging, and an FLBD with adaptive attack resilience demonstrates 
high robustness.
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3.2.3. Practicality
Practicality reflects the capability of an FLBD to be used in practical 

scenarios. A practical FLBD should be compatible with various FL 
security strategies and remain unrestricted by specific attack scenarios. 
We propose the following two criteria to evaluate the practicality of an 
FLBD.

Secure Aggregation Compatibility: It is used to measure whether 
an FLBD is compatible with secure aggregation mechanisms, which 
play an important role in privacy-preserving FL. The goal of secure 
aggregation is to ensure that model updates provided by clients cannot 
be snooped on by the server or other clients during the aggregation 
process [97]. In practical scenarios, both privacy and robustness are 
crucial for an FL system. Thus, an FLBD with secure aggregation 
compatibility is more practical than one without it.

Unrestricted Poisoned Model Rate: It means that an FLBD’s per-
formance remains unaffected by the poisoned model rate, which de-
notes the ratio of compromised clients to the total number of clients. 
An FLBD with an unrestricted poisoned model rate can be effectively 
used in more severe attack scenarios, making it more practical.

3.2.4. Efficiency
Efficiency reflects the time and resource cost required to implement 

an FLBD. Undoubtedly, a lightweight FLBD is more likely to be adopted. 
By analyzing previous studies, we found that the primary cost factors 
of an FLBD arise from extra computation and communication. Extra 
computation involves extensive calculations beyond standard model 
training and aggregation, such as computing the distance or similar-
ity between model updates. Extra communication refers to the extra 
exchange of information between the server and clients beyond the 
regular updates upload and distribution in FL, such as incorporating an 
extra verification process between the server and clients. Consequently, 
we categorize FLBDs as follows: those not requiring extra computation 
and communication are highly efficient ; those requiring only extra 
computation are moderately efficient ; and those requiring both extra 
computation and communication are low efficient.

4. FLBA review

In this section, we first present a taxonomy of FLBAs, as shown in 
Fig.  9. Then, we review studies on HFLBAs and VFLBAs, evaluating 
their pros and cons based on the proposed evaluation criteria. Table 
2 provides a summary and comparison of the reviewed works. While 
ideal FLBAs should meet all the proposed criteria, it is challenging to 
juggle them in practice. Consequently, we explore the trade-offs made 
by existing studies among these criteria. Finally, we discuss a positive 
application of backdoor attacks in FL: backdoor-based watermarking 
methods, which represent an emerging and promising area of research.
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Table 2
Summary and comparison of FLBAs.
 Target 
System

Ref Taxonomy Threat Model Robustness Practicality Efficiency Application  

 Knowledge Capability Attack Imper-
ceptibility

Defense 
Resilience

Attack 
Dynamicity

Backdoor 
Durability

 

 

HFL

[68] Centralized 
Data Poi.

P-¬ Non-collusion 7 NC, RFA 7 7 High IC, NLP  

 [95] Centralized 
Data Poi.

R Non-collusion 7 Most 3 3 Medium IC  

 [67] Distributed 
Data Poi.

R Collusion 7 FG, RFA 7 7 High IC, PA  

 [98] Distributed 
Data Poi.

R Collusion 7 FG 7 ? Medium IC  

 [90] In-Training 
Model Poi.

R – 7 NC, SAD 7 3 Medium IC, NLP  

 [91] In-Training 
Model Poi.

R – 7 NC 7 3 Medium IC  

 [68] In-Training 
Model Poi.

P-¬ Non-collusion 3 NC, RFA, 
Krum, M-K

7 7 Medium IC, NLP  

 [99] In-Training 
Model Poi.

R Collusion 3 Most 7 3 Low IC, PA  

 [100] In-Training 
Model Poi.

R Non-collusion 3 Most 7 3 Low IC  

 [101] In-Training 
Model Poi.

R Non-collusion 3 Most 7 3 Low IC  

 [102] In-Training 
Model Poi.

R Collusion 3 Most 3 ? Low IC  

 [103] In-Training 
Model Poi.

R Collusion 3 NC, FG, FLA, 
RFL

7 ? Low IC  

 [66] Post-Training 
Model Poi.

P-­ Non-collusion 3 7 7 7 Medium IC, NLP  

 [104] Post-Training 
Model Poi.

R Non-collusion 3 Most 7 ? Low IC  

 AggVFL [89] Data 
Poisoning

P-® – 7 7 7 ? High IC, NLP  

 

SplitVFL

[84] Data 
Poisoning

P-® – 7 Most 7 ? Medium IC, PA  

 [105] Data 
Poisoning

P-® – 7 GC 7 ? Medium IC, NLP  

 [106] Data 
Poisoning

P-¯ Collusion 7 NCl, DPr, AD 7 ? Medium IC, PA  

 [85] Data 
Poisoning

P-® – 3 CAE, AD 7 ? Medium IC, PA  

 [107] Data 
Poisoning

P-® – 7 GC 3 ? Medium IC  

 [108] Model 
Poisoning

P-¯ – 7 NC, GC 7 ? Low IC, NLP  

3: Satisfied; 7: Unsatisfied; ‘-’: Not available; ‘?’: Not discussed; R: Regular; P: Powful; ¬: Public datasets; ­: Knowledge about the FL system; ®: One or more target-class samples; 
¯: An auxiliary dataset; NC: Norm Clipping [109]; RFA: Robust Federated Aggregation [110]; M-K: Multi-Krum [111]; FG: FoolsGold [112]; SAD: Spectral Anomaly Detection 
[69]; FLA: FLAME [113]; RFL: RFLBAT [114];GC: Gradient Compression [115]; NCl: Neural Cleanse [77]; DPr: Differential Privacy [116]; CAE: Confusional AutoEncode [117]; 
AD: Anomaly Detection; IC: Image Classification; NLP: Natural Language Processing; PA: Predictive Analytics.
4.1. Taxonomy of FLBAs

We first divide FLBAs into HFLBAs, VFLBAs, and backdoor-based 
watermarking methods in FL.

4.1.1. Taxonomy of HFLBAs
HFLBAs are further categorized into data poisoning attacks and 

model poisoning attacks against HFL based on different attack ap-
proaches.

(1) Data Poisoning: In a data poisoning backdoor attack, an adver-
sary aims to implant a backdoor into the global model by poisoning the 
local data of malicious clients, without manipulating their local training 
process. Based on the characteristics of the triggers, data poisoning can 
be further divided into centralized-trigger data poisoning attacks and 
distributed-trigger data poisoning attacks.

Centralized-Trigger Data Poisoning: As shown in Fig.  6, in a 
centralized-trigger backdoor attack, the adversary distributes a com-
mon trigger (also known as a centralized trigger) to all malicious 
clients. In the inference phase, any input with the centralized trigger 
will activate the backdoor.
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Distributed-Trigger Data Poisoning: In a distributed-trigger back-
door attack, the adversary divides a global trigger into multiple dis-
tributed triggers and distributes them separately to malicious clients. 
Each malicious client uses its distributed trigger to poison local data. In 
the inference phase, any input with the global trigger will activate the 
backdoor, even if the global trigger never appeared during the training 
phase. A detailed process is shown in Fig.  10.

(2) Model Poisoning: In a model poisoning backdoor attack, to im-
plant a backdoor into the global model, an adversary not only poisons 
the local data of malicious clients, but also manipulates their local 
training process or directly modifies local model parameters. According 
to the timing of model poisoning, such attacks can be further divided 
into in-training and post-training model poisoning attacks.

In-Training Model Poisoning: In-training model poisoning attacks 
occur during local model training, i.e., Step ­ in Fig.  3. These attacks 
usually manipulate the training process of the local model.

Post-Training Model Poisoning: Post-training model poisoning 
attacks occur after local model training and before model updates are 
uploaded, i.e., between Step ­ and Step ® in Fig.  3. These attacks 
usually modify the parameters of the local model directly.
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Fig. 10. The process of a distributed-trigger backdoor attack.
Fig. 11. The process of backdoor-based watermarking methods in FL.
4.1.2. Taxonomy of VFLBAs
VFLBAs can be categorized into Backdoor Attacks against AggVFL 

(AggVFLBAs) and Backdoor Attacks against SplitVFL (SplitVFLBAs) 
based on the architecture of VFL. These attacks can be further divided 
into data poisoning attacks and model poisoning attacks, as defined in 
Section 4.1.1. A detailed taxonomy is presented in Fig.  9.

4.1.3. Taxonomy of backdoor-based watermarking methods in FL
Backdoor-based watermarking methods in FL can be divided into 

server-side and client-side watermarking methods, based on the initia-
tor of watermark implantation. Fig.  11 briefly illustrates the processes 
involved in these two categories, where the trigger set consists of the 
generated specific noise images. Both methods share two main stages 
— watermark embedding and ownership verification — but differ in 
the process of the watermark embedding stage.

4.2. Review on HFLBAs

We review the existing studies on HFLBAs based on the taxonomy 
proposed above.

4.2.1. Data poisoning
Existing research has proposed novel approaches for data poisoning 

exploiting the distributed nature of FL. Since then, these approaches 
have comprehensively been improved by subsequent research.
(1) Centralized-Trigger Data Poisoning: 

Bagdasaryan et al. [66] proposed the first backdoor attack against 
HFL, a semantic backdoor attack. This attack employs a semantic fea-
ture shared across samples as a backdoor trigger (e.g., a specific pattern 
on cars) and assigns a target label to samples with the semantic feature. 
In the inference phase, the poisoned model misclassifies samples with 
the semantic feature without any sample modification.

To enhance the robustness of the semantic backdoor attack, Wang 
et al. [68] proposed an edge-case backdoor attack. This attack assumes 
a powerful adversary who possesses public datasets. Additionally, the 
adversary can compromise multiple clients without collusion. In an 
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edge-case attack, the adversary first collects edge-case samples with the 
target semantic feature from public datasets, which refers to samples 
that are unlikely to appear in the training data of benign clients. 
Subsequently, the adversary assigns a target label to these edge-case 
samples. The adversary trains the poisoned local models based on 
edge-case samples and local benign samples. Since other benign clients 
struggle to learn the clean features of these edge-case samples, the back-
doors in poisoned models become difficult for defense mechanisms to 
detect and remove. Additionally, beyond leveraging public datasets to 
expand the poisoned dataset, some studies [118,119] utilize Generative 
Adversarial Networks (GANs) to generate additional samples based on 
local knowledge, thereby eliminating the adversary’s dependence on 
external knowledge.

Previous studies [66,68] on backdoor triggers did not adequately 
account for the dynamics of the global model throughout the training 
process, leading to backdoors within the global model being neither 
durable nor optimal. To address this limitation, Zhang et al. [95] pro-
posed an Adversarially Adaptive Backdoor Attack to Federated Learn-
ing (A3FL). The A3FL assumes a regular adversary who can compromise 
multiple clients without collusion. Additionally, the A3FL assumes that 
a defender can access the trigger and utilize it to adversarially train 
the global model. The A3FL aims to optimize the trigger so that it can 
survive in this global model. Specifically, in the process of optimizing 
the trigger, the adversary adversarially trains the global model based 
on the samples with the trigger to predict the movement of the future 
global model. Meanwhile, the trigger is optimized to facilitate the 
implantation of backdoors into both the original global model and the 
adversarially trained global model. Finally, the adversary employs the 
optimized trigger to poison local data and trains poisoned local models.

Discussion: The semantic backdoor attack [66] is relatively simple 
and often serves as the foundation for other advanced attacks, such 
as [68,90,91]. The edge-case backdoor attack enhances the effective-
ness of semantic backdoor attacks while achieving high efficiency. 
However, this attack fails to achieve attack dynamicity and backdoor 
durability. Compared to the edge-case backdoor attack, A3FL trades off 
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the overhead associated with trigger optimization for superior practi-
cality and defense resilience. Additionally, none of them demonstrates 
attack imperceptibility, as they are solely focused on data poisoning.
(2) Distributed-Trigger Data Poisoning:

Exploiting the distributed nature of HFL, Xie et al. [67] proposed the 
first distributed HFLBA, referred to as a Distributed Backdoor Attack 
(DBA). The DBA assumes a regular adversary who can compromise 
multiple clients and conduct collusion attacks. For a DBA, the adversary 
first designs a global trigger, specifying its location, size, and other 
attributes. This global trigger is then decomposed into multiple dis-
tributed triggers, which are individually assigned to malicious clients. 
After that, each malicious client uses its assigned distributed trigger 
to poison its local dataset and train a poisoned local model. After the 
models are aggregated, the global trigger is successfully implanted into 
the global model. During the inference phase, any sample with the 
global trigger is expected to activate the backdoor.

Although the DBA demonstrates the effectiveness of distributed 
triggers, the model-independent nature of the triggers used in the DBA 
limits its ability to achieve high attack success rates. To address this 
limitation, Gong et al. [98] proposed an advanced DBA that generates 
a customized distributed trigger for each malicious client. This attack 
assumes an adversary similar to the ones in DBA. Specifically, the ad-
versary first determines the attributes of distributed triggers, including 
their locations, shapes, and sizes, and assigns a trigger mask to each 
malicious client. Then, each malicious client optimizes its distributed 
trigger to maximally activate neurons associated with the target label, 
thus obtaining a model-dependent and effective distributed trigger. The 
subsequent steps of this attack, including data poisoning, local training, 
and model aggregation, are identical to those in the DBA.

Discussion: The two studies discussed above demonstrate sound 
attack performance and have been experimentally shown to bypass 
several defenses, such as RFA [110] and FoolsGold [112]. Meanwhile, 
the DBA exhibits high efficiency, while the advanced DBA achieves 
moderate efficiency. However, neither of these two attacks achieves 
attack imperceptibility, attack dynamicity, and backdoor durability, 
which significantly undermines their robustness and applicability in 
practical scenarios. Additionally, the significant bias between the model 
updates provided by benign and malicious clients makes these at-
tacks vulnerable to advanced robust aggregation algorithms, such as 
Multi-Krum [111] and Bulyan [120].

4.2.2. Model poisoning
Although data poisoning-based attacks can successfully implant 

backdoors into the global model, most of them suffer from limita-
tions such as limited attack performance, poor robustness, and low 
practicality. Consequently, researchers have introduced various model 
poisoning attacks to address these shortcomings.

(1) In-Training Model Poisoning: The core goal of all existing 
model poisoning attacks is to enhance attack performance. Beyond 
this shared goal, these attacks can be broadly categorized into two 
groups: those that prioritize improving robustness and those that focus 
on increasing practicality.
Practicality Enhancement:

Zhang et al. [90] believed that the poor backdoor durability in 
previous studies results from conflicts in key parameters of poisoned 
and benign model updates, which may cause the backdoors to dis-
appear. To address this issue, they proposed Neurotoxin. This attack 
assumes a regular adversary who compromises a single client. Specifi-
cally, the adversary first poisons the local training data, following the 
edge-case [68] backdoor attack or the semantic [66] backdoor attack. 
Subsequently, the adversary selects infrequently updated parameters 
based on the historical gradient variations of the benign local model, 
updating only these parameters during training on poisoned samples.

Compared to Neurotoxin [90], Dai et al. [91] took a step back 
and argued that benign samples in the ground-truth classes of poi-
soned samples hinder the model from learning backdoors since they 
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share similar features but have different labels. Based on this insight, 
they proposed Chameleon. Chameleon assumes an adversary similar 
to the one in Neurotoxin. Specifically, the adversary first poisons the 
local training data following BadNets [38] or the semantic backdoor 
attack [66]. Subsequently, the adversary splits the local model into an 
encoder and a classifier. The encoder is trained employing supervised 
contrastive learning [121] to manipulate the embedding relationships 
among samples in different classes. After that, the embedding distance 
between poisoned samples and benign samples in the ground-truth 
classes of poisoned samples is increased, while the embedding distance 
between poisoned samples and benign samples in the target class is 
decreased. Finally, the parameters in the encoder are frozen, and the 
classifier is further trained for the classification task.

Discussion: The studies discussed above achieve excellent backdoor 
durability. Neurotoxin and Chameleon achieve moderate efficiency and 
introduce only minimal modifications to the model training process, 
allowing them to be well-compatible with other advanced attacks. Ad-
ditionally, these two attacks can bypass some simple defenses, such as 
Norm Clipping [109], and Spectral Anomaly Detection [69]. However, 
neither of these attacks achieves attack imperceptibility and attack 
dynamicity, rendering them vulnerable to advanced FLBDs such as 
FLAME [113] and SparseFed [122].
Robustness Enhancement:

Building upon the edge-case backdoor attack [68], Wang et al. [68] 
proposed a Projected Gradient Descent (PGD) attack. This attack as-
sumes an adversary similar to the ones in the edge-case backdoor 
attack. The PGD attack aims to bypass norm-based defenses by con-
straining the norm deviation between poisoned models and the global 
model. Specifically, the adversary first employs the edge-case backdoor 
attack to poison the local data. Subsequently, during the model training 
process, the adversary periodically projects the parameters of the poi-
soned model onto a ball, which is centered around the global model 
of the previous iteration and has a radius defined by the constraint 
threshold.

Several studies [99–101] have attempted to achieve attack imper-
ceptibility by optimizing triggers. Fang et al. [100] proposed a novel 
approach known as the Focused-Flip Backdoor Attack (F3BA). Specif-
ically, the adversary flips the signs of unimportant parameters in the 
model and optimizes the trigger to maximize backdoor activation while 
preventing excessive model updates. Then, the adversary employs an 
optimized trigger to poison local data and retrains the model to main-
tain its normal performance. In addition, Nguyen et al. [101] proposed 
an Irreversible Backdoor Attack (IBA). IBA designs a generative model 
that produces specific subtle noise for each sample. This specific noise 
serves as a trigger for each sample and is exploited by the adversary to 
poison the selected sample. Furthermore, the adversary employs two 
model poisoning techniques, similar to those in Neurotoxin [90] and 
PGD attacks [68], to mitigate anomalies in the poisoned model updates 
and enhance backdoor durability. Both F3BA and IBA assume a regular 
adversary who can compromise multiple clients without collusion. In 
contrast, Lyu et al. [99] proposed CerP, which assumes a regular 
adversary who can compromise multiple clients and conduct collusion 
attacks. CerP frames the backdoor attack as a joint optimization process 
of three learning objectives. First, the trigger is optimized to maximize 
the model’s accuracy on the backdoor task while constraining its mag-
nitude to avoid detection. Second, the difference between the poisoned 
and benign model updates is minimized. Third, the high similarity 
among poisoned model updates is suppressed by exploiting collusion 
among malicious clients. Based on these three objectives, the adversary 
trains poisoned models to execute the covert and colluded backdoor 
attack. 

To simultaneously circumvent various defenses, Li et al. [102] 
proposed a backdoor attack framework called 3DFed, which integrates 
multiple evasion defense strategies. 3DFed assumes a regular adversary 
who can compromise multiple clients and conduct collusion attacks. 
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In 3DFed, the adversary first poisons the local data by adding a pixel 
pattern to the corners of images and trains poisoned models. Then, 
the adversary modifies the parameters in the poisoned models with a 
low update frequency to unique values. In the subsequent round, the 
adversary infers which poisoned models were accepted by checking the 
global model’s changes on those parameters. Based on the results of this 
inference, the adversary dynamically adjusts three modules to optimize 
the training of the poisoned model. The first module restricts the norm 
deviations between the poisoned and benign model updates by modi-
fying the loss function. The second module aims to prevent excessive 
concentration and high pairwise similarities of poisoned model updates 
by adding adaptive noise to these updates. The third module introduces 
decoy models to hide the real poisoned model within benign models.

Although 3DFed exhibits strong attack effectiveness and robustness, 
its performance heavily relies on a sufficient number of malicious 
clients. To address this limitation, Li et al. [103] proposed a DAta-fRee 
bacKdoor attack in FEDerated learning (DarkFed). DarkFed assumes an 
adversary similar to the ones in 3DFed. Following Cao et al. [123], 
DarkFed generates a substantial number of fake clients and constructs 
shadow datasets for these clients using public datasets or a Gaus-
sian distribution. The adversary then poisons the shadow datasets and 
optimizes the loss function during model training to restrict the differ-
ences in magnitude, distribution, and directional consistency between 
poisoned models and the global model.

Discussion: The studies discussed above employed various tech-
niques to restrict the differences between poisoned and benign model 
updates and circumvent various defenses, resulting in exhibiting ex-
cellent attack robustness. Additionally, these attacks exhibit their ad-
vantages and disadvantages in terms of practicality and efficiency. 
CerP, F3BA, and IBA have been experimentally shown to achieve 
backdoor durability. But they fail to demonstrate attack dynamicity. 
Conversely, 3DFed can dynamically adjust its attack strategy based 
on the global model’s state, thereby exhibiting attack dynamicity. 
However, the backdoor durability of 3DFed remains unexplored. Addi-
tionally, CerP, F3BA, IBA, and 3DFed exhibit low efficiency due to the 
requirement of optimizing triggers and training auxiliary models. The 
PGD attack exhibits moderate efficiency but fails to achieve backdoor 
durability and attack dynamicity. Although DarkFed does not achieve 
backdoor durability or attack dynamicity and exhibits low efficiency, 
it addresses the limitation associated with relying on a large number 
of malicious clients, resulting in superior attack performance in certain 
challenging scenarios.
(2) Post-Training Model Poisoning:

Building upon the semantic backdoor attack, Bagdasaryan et al. [66] 
proposed a model replacement attack. This attack assumes a powerful 
adversary who possesses knowledge about the FL system, such as the 
global learning rate and the number of clients participating in FL. 
Additionally, the adversary can compromise multiple clients without 
collusion. In this attack, the adversary first employs a semantic back-
door attack to poison local data and modifies the loss function to 
constrain the difference between the poisoned and benign model up-
dates during the training process. After that, the adversary significantly 
amplifies the parameters of the poisoned local models based on its prior 
knowledge and uploads them to the server, attempting to increase their 
impact on the global model.

Zhuang et al. [104] observed that a small subset of layers within 
the model dominates the model vulnerabilities, naming these layers 
Backdoor-Critical (BC) layers. Based on this observation, they proposed 
a layer replacement attack. This attack can achieve high attack perfor-
mance by targeting only the BC layers, thus evading many defenses. 
Specifically, this attack assumes a regular adversary who can compro-
mise multiple clients without collusion. First, the adversary trains a 
benign model and a poisoned model respectively. Subsequently, the 
adversary iteratively replaces one layer of the poisoned model with 
the corresponding layer from the benign model, while monitoring the 
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changes in attack success rate following each layer replacement. Then, 
the layers are organized in descending order based on the changes 
in attack success rate. Finally, the adversary progressively replaces 
layers of the benign model with corresponding layers from the poisoned 
model in the sorted sequence until the attack success rate surpasses a 
predetermined threshold.

Discussion: The model replacement attack satisfies attack imper-
ceptibility but has poor defense resilience due to the amplification 
of poisoned local model parameters. The layer replacement attack 
achieves attack imperceptibility and can bypass most defenses, as only 
a subset of layers in the local model is poisoned. Furthermore, both 
approaches are not highly practical. The model replacement attack 
exhibits moderate efficiency, whereas the efficiency of the layer re-
placement attack is low due to the requirement of training two models. 
Additionally, the model replacement attack is only effective when the 
global model is close to convergence, which significantly undermines 
its flexibility.

4.3. Review on VFLBAs

In VFL, each client possesses a subset of samples’ features, while the 
labels are held by the server, as described in Section 2.1. However, as 
discussed in Section 2.4.1, existing FLBAs assume an adversary capable 
of compromising one or more clients, but not the server. Consequently, 
for VFLBA, the adversary cannot modify the labels and can only poi-
son target-class samples to conduct backdoor attacks. This raises the 
question of how to identify which samples belong to the target class. 
Therefore, compared with data poisoning attacks against HFL, data 
poisoning attacks against VFL encounter an additional challenge: label 
inference.

4.3.1. AggVFLBAs
In AggVFL, the clients’ local models can effectively extract informa-

tion from samples and generate informative embeddings. Building on 
this insight, Liu et al. [89] proposed a gradient-replacement backdoor 
attack. This attack assumes a powerful adversary who compromises a 
client and has access to a target-class sample. Specifically, the adversary 
randomly selects black squares as a trigger to randomly poison a subset 
of local samples. Subsequently, the adversary replaces the gradients 
of these samples, which are distributed by the server, with those of 
the target-class sample. This approach helps to create a poisoned local 
model that can generate target-class embeddings for poisoned samples.

Discussion: The gradient-replacement backdoor attack is straight-
forward and highly efficient. However, it lacks support for attack 
imperceptibility or attack dynamicity, and its backdoor durability re-
mains unexplored. Additionally, this attack cannot be directly applied 
to SplitVFL, limiting its broader applicability.

4.3.2. SplitVFLBAs
(1) Data Poisoning:

Literature [84,105] assumes a powerful adversary who can compro-
mise one client and possess a target-class sample. The adversary utilizes 
this target-class sample to identify target-class samples within malicious 
clients’ local data. Specifically, Bai et al. [84] conducted label inference 
through embedding swapping. For a well-trained SplitVFL, the server 
returns a small loss for each embedding uploaded by clients. However, 
if an embedding is maliciously modified to that of a different class, 
the server responds with a large gradient. Consequently, the adversary 
can perform label inference by swapping embeddings and observing 
the resulting gradients. Similarly, Xuan et al. [105] proposed a label 
inference method based on gradient similarity. This approach relies on 
the observation that samples belonging to the same class exhibit similar 
gradients. After identifying the target-class samples within malicious 
clients’ local data, the adversary proceeds to poison them. Bai et al. [84] 
designed a stripe-like trigger to directly poison the embeddings of 
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these target-class samples. Furthermore, they enhanced the attack per-
formance by employing learning rate adjustments and randomization 
strategies. Following Gu et al. [38], Xuan et al. [105] randomly select 
a white square as a trigger to poison target-class samples. To further 
enhance this attack’s effectiveness, the adversary replaces some of the 
target-class samples with samples from other classes, thereby disrupting 
the model’s learning of the target-class samples.

Naseri et al. [106] proposed a data poisoning attack against
SplitVFL, named BadVFL. BadVFL assumes a powerful adversary who 
processes an auxiliary dataset that shares the same feature distribution 
and label space as the genuine training dataset. Additionally, the ad-
versary can compromise multiple clients and conduct collusion attacks. 
To facilitate the attack, the adversary first trains a classification model 
using the auxiliary dataset to infer the labels of malicious clients’ 
local samples. Subsequently, trigger generation is formulated as an 
optimization problem. Solving this problem produces a trigger such 
that the embedding of any sample with this trigger is similar to the 
embedding of the target-class sample. Finally, the adversary uses this 
trigger to poison the target-class samples within malicious clients.

Different from previous work conducting label inference,
He et al. [85] and Chen et al. [107] assume an adversary who can 
compromise one client and possess some target-class samples, thereby 
eliminating the requirement for label inference. In the work of He 
et al. [85], trigger generation is formulated as an optimization prob-
lem, aiming to create a trigger embedding that closely resembles the 
embeddings of target-class samples while remaining distinct from the 
embeddings of non-target-class samples. Once the trigger is generated, 
it is used to poison the embeddings of target-class samples. Chen 
et al. [107] proposed a Target-Efficient Clean Backdoor (TECB) attack, 
which consists of two phases: clean backdoor poisoning and targeted 
gradient alignment. In the clean backdoor poisoning phase, the ad-
versary optimizes a trigger utilizing gradients from the server and 
poisons the target-class samples in each round. In the targeted gradi-
ent alignment phase, the adversary randomly poisons some unknown 
samples and replaces their gradients with the scaled gradients of clean 
target-class samples, thereby further enhancing the attack performance.

Discussion: The five studies mentioned above demonstrated high 
attack performance, showcasing the effectiveness of backdoor attacks 
against SplitVFL. Meanwhile, experimental results show that these 
attacks can bypass several defenses, such as BadVFL can circumvent 
defenses based on differential privacy. The study by He et al. [85] 
achieves attack imperceptibility by constraining the differences be-
tween the trigger embedding and the normal embeddings, whereas 
other studies do not focus on attack imperceptibility. The attack pro-
posed by Chen et al. [107] achieves attack dynamicity, as its trigger 
is dynamically optimized during the data poisoning process based on 
gradients from the server. However, attack dynamicity is not focused in 
other studies. Additionally, since these attacks are in their initial stage, 
they do not account for backdoor durability. All five studies require 
additional computations beyond data poisoning, resulting in moderate 
efficiency.

(2) Model Poisoning:
Gu et al. [108] proposed a Latent Representations-based Backdoor 

Attack (LR-BA). LR-BA assumes a powerful adversary who possesses an 
auxiliary dataset that shares the same feature distribution and label 
space as the genuine training dataset. Meanwhile, the adversary can 
compromise only one client. LR-BA is a post-training attack, occurring 
after the completion of the VFL protocol. Initially, the adversary uses 
the malicious client’s local model to obtain the embeddings of the 
auxiliary dataset. These embeddings are then used to train a classifier 
capable of accurately predicting the class of any unknown embeddings. 
Subsequently, the adversary optimizes a backdoored embedding target-
ing a predefined label using the trained classifier. Finally, the malicious 
client poisons its local samples using a specified trigger and fine-
tunes its local model with the poisoned samples and the backdoored 
embedding, thereby implanting a backdoor into the local model.
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Discussion: Experimental results show that LR-BA can effectively 
withstand Norm Clipping and Gradient Compression [115]. However, 
LR-BA does not achieve attack imperceptibility or attack dynamicity, 
and its backdoor durability remains unexplored. Since LR-BA requires 
data poisoning and model fine-tuning, its efficiency is low. Addition-
ally, Gu et al. [108] pointed out that the attack performance of LR-BA 
on multi-classification tasks is unstable and its effectiveness heavily 
relies on the performance of the classifier.

4.4. Review on backdoor-based watermarking methods in FL

We review existing studies on backdoor-based watermarking meth-
ods in FL based on the taxonomy proposed earlier. Notably, some 
studies [65] utilize both backdoor-based and feature-based watermark-
ing techniques. We focus on the former, as the latter falls outside the 
scope of this paper. For further details on watermarking, please refer 
to [124].

4.4.1. Server-side watermarking methods
Server-side watermarking methods usually assume that the server 

initiates FL training and is trusted. In some studies [65,125], the server 
embeds a backdoor-based watermark into the global model to safeguard 
its intellectual property rights. In other studies [126], the server incor-
porates a distinct watermark into the global model distributed to each 
client, enabling the identification of client-specific models.

Tekgul et al. [125] proposed the first server-side backdoor-based 
watermarking approach for FL, named WAFFLE. Specifically, the server 
generates an image trigger set containing random patterns with a 
noisy background and labels each pattern with a different class. After 
each aggregation round, the server retrains the global model using 
this trigger set, thereby embedding these triggers as a watermark 
into the global model. In addition to protecting model ownership, Yu 
et al. [126] proposed Decodable Unique Watermarking (DUW) to locate 
the infringer of a leaked model. In this method, the server first pre-
trains an encoder to generate a unique trigger set for each client. Then, 
this trigger set is embedded into a randomly chosen dataset, along 
with client-wise unique keys. The backdoor watermark is embedded 
into the model through training on this dataset. During verification, 
the ownership of the model is verified, and the client of a leaked 
model is traced based on the client-unique key. Additionally, Shao 
et al. [65] proposed FedTracker, which combines a backdoor-based 
global watermark with multi-bit parameter-based local watermarks. In 
FedTracker, the backdoor-based global watermark is controlled by the 
server side, while the local watermarks are controlled by the client 
side. FedTracker addresses the issue of catastrophic forgetting of the 
main task caused by retraining the model on the trigger set in WAFFLE. 
Specifically, the server first generates a trigger set using the method 
in WAFFLE. Then, the server employs continual learning to retrain the 
global model on the trigger set, thereby reducing forgetting of the main 
task.

Discussion: Server-side and client-side watermarking each have 
advantages and disadvantages. For server-side watermarking, water-
mark conflicts are not an issue, because watermarks are embedded 
into the global model solely by the server. Additionally, server-side 
watermarks can be used to track the client of a leaked model, as 
demonstrated by methods like DUW [126]. However, these methods 
often require retraining the model on a trigger set independent of the 
training data, which inevitably introduces side effects on the model’s 
normal performance. FedTracker [65] has partially alleviated this issue. 
Moreover, existing server-side watermarking methods are primarily 
designed for image classification tasks and have not been extended to 
other types of tasks. Taking NLP tasks as an example, constructing a 
text-based trigger set without any knowledge of the training data poses 
a significant challenge.
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Fig. 12. Taxonomy of FLBDs.
4.4.2. Client-side watermarking methods
For client-side watermarking methods, each client participating in 

FL training aims to implant its watermark into the global model as proof 
of its ownership and contribution.

Liu et al. [127] argued that the server is not entirely trusted. There-
fore, they proposed a client-side watermarking method. In this method, 
the client independently generates a noise-based trigger set and embeds 
the backdoor-based watermark into the model during local training 
using this trigger set. Building upon this, Yang et al. [128] suggest that 
the trigger based on random noise could be easily forged by malicious 
parties. To address this, they designed a non-ambiguous trigger set 
based on a permutation-based secret key and noise-based patterns to 
enhance the robustness of the watermark. Similarly, to further improve 
robustness through the optimization of the trigger set, Nie et al. [129] 
introduced a scheme called FedCRMW, which constructs trigger sets 
for watermark embedding using client-specific identifiers and exclusive 
logos. Additionally, FedIPR proposed by Li et al. [130] aims to mitigate 
conflicts between watermarks across different clients and enhance the 
watermark robustness. In FedIPR, clients independently embed both 
feature-based and backdoor-based watermarks into their local models. 
In the backdoor-based watermarking, adversarial samples are adopted 
as triggers, which are generated from original data with the PGD 
method.

Discussion: Due to the characteristics of FL, client-side water-
marking is compatible with most FL security strategies. Moreover, 
the local knowledge of clients allows them to design robust trigger 
sets to mitigate the side effects of backdoor-based watermarking on 
the model, as exemplified by methods such as FedCRMW [129] and 
FedIPR [130]. However, client-side watermarking faces such challenges 
as watermark conflicts and difficulties in tracking the client of a leaked 
model. Additionally, existing backdoor-based watermarking methods 
solely focus on HFL, while their application in VFL or FTL has not been 
explored. Given that clients’ local knowledge and training processes 
vary across different FL scenarios, client-side watermarking in VFL and 
FTL introduces a new set of challenges.

5. FLBD review

In this section, we first present a taxonomy of FLBDs, as illustrated 
in Fig.  12. Then, based on the taxonomy and evaluation criteria pro-
posed in Section 3.2, we thoroughly review existing FLBDs and assess 
their pros and cons.

5.1. Taxonomy of FLBDs

Based on the target system, FLBDs can be divided into HFLBDs 
and VFLBDs. A detailed taxonomy of HFLBDs is provided as follows. 
VFLBDs are not further classified due to the limited number of studies 
focused on this topic.
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5.1.1. Taxonomy of HFLBDs
HFLBDs can be categorized into local training defenses, pre-aggre-

gation defenses, in-aggregation defenses, and post-aggregation defenses 
based on the stage at which they operate.

(1) Local Training Defenses: Local training defenses occur during 
the clients’ local training phase, i.e., Step ­ in Fig.  3(a). These de-
fenses typically manipulate the local data or the local models’ training 
processes of trusted clients to produce clean and robust local models, 
ultimately facilitating the creation of clean global models.

(2) Pre-Aggregation Defenses: Pre-aggregation defenses occur after 
local model updates are uploaded and before model updates are aggre-
gated., i.e., between Step ® and Step ¯ in Fig.  3(a). These defenses 
usually modify or remove suspicious local model updates. Based on 
the techniques employed, these defenses can be divided into clipping 
and differential privacy-based defenses, pruning-based defenses, and 
anomaly detection-based defenses.

Clipping and Differential Privacy-based Defenses: These de-
fenses encompass two components: constraining the norm of model 
updates and adding noise to the constrained updates. This approach 
modifies suspicious model updates to mitigate their impact on the 
global model.

Pruning-based Defenses: Pruning-based defenses focus on detect-
ing and removing parameters in model updates that are closely asso-
ciated with backdoors. The pruning technique modifies local model 
updates to hinder the implantation of backdoors.

Anomaly Detection-based Defenses: These defenses detect and 
remove suspicious local model updates before aggregation, preventing 
the implantation of backdoors into the global model.

(3) In-Aggregation Defenses: In-aggregation defenses occur during 
aggregation of local model updates, i.e., Step ¯ in Fig.  3(a). These 
defenses typically adjust the global model’s learning rate or the aggre-
gation strategy to mitigate the impact of potential backdoors. Based on 
the different objects being adjusted, these defenses can be further di-
vided into dynamic learning rate-based defenses and dynamic weighted 
aggregation-based defenses.

Dynamic Learning Rate-based Defenses: These defenses dynami-
cally adjust the learning rate distributed by the server in each round, 
thereby hindering potential backdoor attacks.

Dynamic Weighted Aggregation-based Defenses: These defenses 
typically assess the suspiciousness of each local model update and 
assign different aggregation weights to them, mitigating the impact of 
suspicious local model updates on the global model.

(4) Post-Aggregation Defenses: Post-aggregation defenses occur af-
ter the aggregation of local model updates and before the distribution 
of the global model, i.e., between Step ̄  and Step ¬ in Fig.  3(a). These 
defenses typically either directly modify the global model or discard the 
suspicious global model.

5.2. Review on HFLBDs

We review the existing studies on HFLBDs according to the taxon-
omy proposed above. Table  3 summarizes and compares the reviewed 
studies on HFLBDs. Fig.  13 briefly illustrates the characteristics of 
different categories of HFLBDs.
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Fig. 13. An illustration of different categories of HFLBDs.
Table 3
Summary and comparison of HFLBDs.
 Taxonomy Ref Defense 

Model
Robustness Practicality Efficiency Application  

Attack 
Resilience

Adaptive 
Attacks 
Resilience

Secure 
Aggregation 
Compatibility

Unrestricted 
Poisoned 
Model Rate

 

Local 
Training

[88] P-¬ MR, DBA 3 3 7 Medium IC  

Pre-
Aggregation

Clipping and 
Differential 
Privacy

[109] R MR 7 7 3 High IC  

Pruning [92] R MR, DBA, 
Neur

3 7 7 High IC  

Anomaly 
Detection

[69] P-­ MR ? 7 3 Medium IC, NLP  
[113] R MR, DBA, 

PGD, Edge
3 7 7 Medium IC, NLP, 

NIDS
 

[94] R MR, DBA 3 7 3 Medium IC  
[96] R MR, DBA, 

Edge
3 7 7 Medium IC, NLP, 

NIDS
 

[131] R MR, Edge 3 7 7 Medium IC, NLP, 
NIDS

 

[132] R EP 3 7 7 Medium NLP  
[133] R MR, Edge 3 7 7 Medium IC  
[134] R MR, DBA, 

PGD, Edge
? 7 7 Medium IC, NLP, PA  

In-
Aggregation

Dynamic 
Learning Rate

[93] R DBA ? 7 7 High IC  

Dynamic 
Weighted 
Aggregation

[112] R MR 7 7 3 Medium IC, NLP  
[86] P-­ MR 3 7 3 Medium IC  
[87] P-­ MR, DBA, 

Neur
3 7 3 Medium IC  

[135] R MR, DBA, 
Edge, Neur

? 7 3 Medium IC  

[136] R MR, DBA, 
Edge, PGD

3 7 3 Medium IC  

Post-
Aggregation

[137] R MR, Edge ? 3 3 Medium IC, PA  
[138] R MR 3 3 7 Low IC  

: Satisfied; 7: Unsatisfied; ‘?’: Not discussed; R: Regular; P: Powerful; ¬: Knowledge of trusted clients; ­: An additional dataset; MR: Model Replacement [66]; DBA: Distributed 
ackdoor Attacks [67]; Edge: Edge-case [68]; PGD: The Projected Gradient Descent attack [68]; Neur: Neurotoxin [90]; EP: Embedding Poisoning [139]; IC: Image Classification; 
LP: Natural Language Processing; PA: Predictive Analytics; NIDS: Network Intrusion Detection System.
15 
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5.2.1. Local training defenses
Zhang et al. [88] proposed a Federated Learning Provable De-

fense framework (FLIP), which erases potential backdoors in the global 
model by adversarially training local models of trusted clients. FLIP 
assumes a powerful defender who has full knowledge of the server and 
several trusted clients. During the local training phase, the defender 
employs a trigger inversion technique [77] to generate a universal 
trigger for each trusted client and adds this trigger to a random subset 
of local samples without altering their labels. Subsequently, the trusted 
clients train robust local models on the modified local data. These 
robust local models can significantly reduce the impact of backdoors 
introduced by poisoned models on the global model.

Discussion: Experimental results show that FLIP achieves adaptive 
attack resilience and effectively defends against the model replacement 
attack [66] and the DBA [67]. Additionally, it can be compatible 
with secure aggregation. However, the FLIP requires restricting the 
number of malicious clients to ensure a sufficient presence of trusted 
clients. Training a universal trigger for each trusted client results in 
moderate efficiency for FLIP. Additionally, the performance of FLIP is 
heavily dependent on the constructed universal trigger, thus it may be 
ineffective if an adversary employs a trigger that significantly deviates 
from the universal trigger.

5.2.2. Pre-aggregation defenses
(1) Clipping and Differential Privacy-based Defenses:

To defend against FLBAs based on amplified poisoned model up-
dates [66], Sun et al. [109] proposed a simple but effective defense 
mechanism. This defense assumes a regular defender. Before the server 
aggregates local model updates, the defender clips the norms of these 
updates within a predefined threshold. Subsequently, a small amount 
of Gaussian noise is added to the clipped model updates based on 
differential privacy techniques. This approach significantly weakens 
and disrupts potential poisoned model updates.

Discussion: This defense remains effective regardless of the number 
of malicious clients and can effectively counter the model replacement 
attack [66]. Additionally, this defense exhibits high efficiency, leading 
to it often being integrated as a defensive component within complex 
defense frameworks [96,113,137]. However, this defense is ineffective 
against adaptive attacks and is incompatible with secure aggregation. 
Additionally, setting appropriate thresholds for norm clipping and noise 
amount is challenging.
(2) Pruning-based Defenses:

Observing that key parameters updated in local models differ be-
tween malicious and benign clients, Huang et al. [92] proposed a 
defense mechanism called Lockdown based on the pruning approach. 
Lockdown assumes a regular defender. The defender prohibits all 
clients from updating parameters that contribute less to the main task. 
Specifically, the defender assigns each client a mask that designates 
which model parameters can be updated. This mask is dynamically 
adjusted based on the statistical frequency of parameter updates. Con-
sequently, Lockdown effectively prunes suspicious parameter updates 
before aggregation, thereby preventing the introduction of backdoors 
into the global model.

Discussion: Experimental results show that Lockdown can effec-
tively defend against various attacks, including the model replacement 
attack [66], DBA [67] and Neurotoxin [90], and even adaptive attacks. 
However, Lockdown is not compatible with secure aggregation. Mean-
while, the performance of Lockdown is significantly affected by the 
number of malicious clients. Additionally, Lockdown modifies the train-
ing strategy of clients, which may introduce new privacy protection 
concerns and new attack surfaces.
(3) Anomaly Detection-based Defenses:

Research on anomaly detection typically focuses on designing a 
strategy to effectively separate poisoned and benign model updates. 
16 
These defenses typically assume a regular defender, except the defense 
presented in [69].

Li et al. [69] observed that poisoned and benign model updates are 
represented very differently in low-dimensional latent space. Based on 
this observation, they proposed an AutoEncoder-based defense mech-
anism. This defense assumes a powerful defender who knows a clean 
public dataset. Specifically, the defender first trains a model multiple 
times on the public dataset to get multiple benign model updates. After 
that, these model updates are used to train an AutoEncoder [140], 
in which the encoder encodes model updates into low-dimensional 
embeddings and the decoder reconstructs the model updates from these 
embeddings. Subsequently, the defender utilizes the AutoEncoder to 
reconstruct the local model update of each client. If a reconstructed 
model update is far away from its original one, this model update 
should be poisoned.

Thienet et al. [113], Zhang et al. [94], Rieger et al. [96], Kumari 
et al. [131] and Zhang et al. [132] explored the differences between 
poisoned and benign model updates across various features. Their work 
often involves calculating the differences between model updates across 
the features they introduced and clustering model updates based on 
these differences to detect and remove anomalous updates. Thienet 
et al. [113] proposed a defense framework named FLAME, which de-
tects poisoned model updates by measuring angular deviation between 
model updates. In addition, FLAME introduced adaptive clipping and 
noising strategies, offering an improvement over the defense based on 
clipping and differential privacy [109]. Zhang et al. [94] developed 
FLDetector, a defense mechanism that leverages the consistency of 
local model updates from a client. This mechanism first predicts each 
client’s model updates using its local historical updates and then detects 
poisoned updates by analyzing the differences between predicted and 
actual model updates for each client. Rieger et al. [96] observed 
that the presence of numerous mislabeled samples in malicious clients 
causes significant differences in the parameters of benign and poisoned 
local models, as well as in their prediction vectors for the same sam-
ples. Building upon these observations, Rieger et al. [96] proposed 
DeepSight, which detects poisoned updates by calculating differences 
between model parameters and differences between prediction vectors 
of local models for randomly generated samples. Kumari et al. [131] 
proposed a defense mechanism called BayBFed, which utilizes the 
probability distribution of local model updates to detect anomalous 
updates. Zhang et al. [132] observed that, for NLP tasks, the difference 
in data divergence between poisoned and benign model updates is 
more significant than their difference in distance. Consequently, they 
introduced Fed-FA, a defense specifically designed for NLP tasks. This 
approach employs F-divergence to calculate the differences between 
each local model update and the global model update, and removes 
those updates with large F-divergence values.

Previous studies have typically employed a single metric for detect-
ing anomalous model updates, limiting their effectiveness to specific 
attacks. Kraußet al. [133] and Huang et al. [134] proposed defense 
mechanisms that integrate multiple detection metrics. Kraußet al. [133] 
introduced six metrics to measure the distance between local and 
global model updates, as well as variations in model parameters. Huang 
et al. [134] introduced three metrics to assess the distance between 
local and global model updates. The primary difference between these 
two approaches lies in how to use multiple metrics: the former detects 
anomalous model updates using each metric individually, while the 
latter consolidates the three metrics into a unified metric and detects 
anomalous model updates based on the unified metric.

Discussion: Anomaly detection-based defenses are a crucial part 
of HFLBDs and have demonstrated good performance across various 
applications. Additionally, most of them [94,96,113,131–133] are able 
to bypass adaptive attacks, significantly enhancing their robustness. 
However, since these defenses typically involve processing and comput-
ing model updates, such defenses tend to exhibit moderate efficiency 
and are incompatible with secure aggregation. Additionally, the studies 
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by Li et al. [69] and Zhang et al. [94] rely on an additional dataset 
and historical model updates from clients respectively, rather than on 
statistics from clients, which allows their defenses to remain effective 
regardless of the model poisoning rate. In contrast, although other 
studies [96,113,131–134] do not depend on additional knowledge or 
historical information, they typically require a poisoned model rate of 
less than 50%.

5.2.3. In-aggregation defenses
(1) Dynamic Learning Rate-based Defenses:

Inspired by an insight that the updating direction of poisoned and 
benign models differ in certain dimensions, Ozdayi et al. [93] proposed 
a defense mechanism that dynamically adjusts the learning rate of 
the model distributed by the server. This mechanism assumes a regu-
lar defender. Specifically, because the signs of benign model updates 
exhibit high consistency in each dimension, the defender maintains 
a normal learning rate in the dimensions where the signs of model 
updates exhibit high consistency. Conversely, as the signs of poisoned 
model updates typically differ from those of benign model updates, the 
defender flips the signs of the learning rate in the dimensions where 
there is a disagreement in signs of model updates. This strategy aims 
to maximize the loss associated with backdoor learning.

Discussion: This defense mechanism is lightweight and achieves 
high efficiency. Experimental results demonstrate that it effectively de-
fends against DBA [67]. However, the resilience of this defense against 
adaptive attacks remains unexplored. Since it adjusts the learning rate 
based on statistical methods, it becomes ineffective in the presence 
of a large number of malicious clients. Additionally, this defense is 
incompatible with secure aggregation.
(2) Dynamic Weighted Aggregation-based Defenses:

The research based on dynamic weighted aggregation seeks to 
explore a scoring strategy for assessing the suspiciousness of model 
updates. This strategy assigns different weights to model updates during 
aggregation based on their respective scores, thereby mitigating the 
impact of anomalous updates on the global model. These defenses 
typically assume a regular defender, except the defenses presented 
in [86] and  [87].

Fung et al. [112] argued that poisoned model updates exhibit high 
similarity, as malicious clients share the same backdoor task. Building 
upon this idea, they proposed FoolsGold, which assigns the aggregation 
weights of model updates based on the maximum cosine similarity 
between updates. Model updates that are more similar to others are 
assigned smaller weights. Yang et al. [135] proposed a defense mecha-
nism named RoseAgg. To defend against collusion attacks, RoseAgg first 
aggregates multiple updates that exhibit high similarity into a single 
update and then employs principal component analysis [141] to extract 
a benign principal component from the model updates. Subsequently, 
the aggregation weights of local model updates are assigned based 
on their projection values onto the clean principal components. The 
smaller the projection value, the smaller the weight of the local model 
update. Cao et al. [86] considered that existing robust aggregation 
algorithms [111,142] are ineffective when there are numerous mali-
cious clients, as they rely solely on local model updates. Therefore, 
they proposed a defense mechanism based on a root of trust, named 
FLTrust. FLTrust assumes a powerful defender who has an additional 
small training dataset. FLTrust assigns the aggregation weight of each 
local model update based on the difference between the local model 
update and the benign model update (i.e., the trust root) trained on this 
dataset. The greater the difference, the smaller the weight of the local 
model update. Jia et al. [87] proposed a game-theory-based defense 
mechanism named FedGame, which assigns the aggregation weights of 
local model updates through a minimax game between an adversary 
and a defender. FedGame assumes a powerful defender who has an 
additional small training dataset, and an adversary who is aware of 
the defender’s defense strategy. The adversary estimates the weights of 
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the poisoned models adjusted by the defender using local knowledge 
and optimizes the backdoor attack strategy to increase the weights of 
these models. The defender first reverses engineering a trigger and a 
target class based on the global model and uses them to poison the 
training dataset. Then, the defender calculates the backdoor accuracy of 
each local model on the poisoned dataset and adjusts the weights of the 
local models based on this accuracy. The higher the backdoor accuracy, 
the smaller the weight of the model. Additionally, Huang et al. [143] 
introduced a method for evaluating client trustworthiness by analyzing 
their behavioral information at the classification and feature layers. 
This trust evaluation is used to assign different aggregation weights to 
different clients, effectively suppressing the implantation of backdoors.

Unlike previous studies’ model training and aggregation processes, 
Zhang et al. [136] decompose a complete model into an extractor and 
a classifier, which are trained and aggregated independently. Building 
on this, they introduce a backdoor defense framework called FLPu-
rifier, designed to disrupt the strong correlation between the trigger 
features and the target label. During the local training phase, each 
client first trains the extractor on label-removed samples via supervised 
contrastive learning [144] and then retrains the entire model on la-
beled samples. In the aggregation phase, the server performs average 
aggregation on the clients’ extractors and applies weighted aggregation 
to the clients’ classifiers, as the extractors are clean. The server then 
adjusts the aggregation weights based on the difference between each 
local classifier and an average classifier representing the mean of all 
classifiers. The larger the difference, the smaller the weight of the 
classifier.

Discussion: The studies discussed above can achieve sound de-
fense performance regardless of the poisoned model rate. FLTrust [86], 
FedGame [87], and FLPurifier [136] have been experimentally shown 
to be effective against adaptive attacks, significantly enhancing their 
robustness. However, FoolGolds is ineffective against such attacks and 
the resilience of RoseAgg against adaptive attacks remains unexplored. 
Additionally, these defenses require knowledge of each local model up-
date to adjust the aggregation weights, making them incompatible with 
secure aggregation. Lastly, these studies achieve moderate efficiency, as 
they require additional computations of the differences between model 
updates.

5.2.4. Post-aggregation defenses
Xie et al. [137] proposed the first general framework for training 

certifiably robust FL models against backdoor attacks, named Cer-
tifiably Robust Federated Learning (CRFL). CRFL assumes a regular 
defender and operates during the training and inference phases. During 
the training phase, the defender clips the norm of the aggregated global 
model and adds noise to it. During the inference phase, the defender 
smooths the global model with randomized parameter smoothing and 
makes predictions based on the smoothed global model. CRFL utilizes 
clipping and smoothing techniques on model parameters to regulate 
the smoothness of the global model, thereby providing a sample-wise 
robustness certification against backdoors with limited magnitude.

Andreina et al. [138] proposed a Backdoor detection via Feedback-
based Federated Learning (BaFFLe). BaFFLe assumes a regular de-
fender. BaFFLe introduces a validation phase after each round of ag-
gregation. During this phase, the server sends the current global model 
and the previous global models to each client. After receiving these 
global models, the clients calculate the differences in misclassification 
rates between each pair of global models on local data. Based on 
these differences, the clients justify whether the current global model 
has been compromised and report results to the server. Based on the 
feedback from the clients, the server determines whether to accept the 
current global model by statistical methods.

Discussion: The studies discussed above occur after aggregation, 
thus they are compatible with secure aggregation. CRFL [137] has been 
demonstrated to be effective regardless of the poisoned model rate, 
resulting in superior practicality. However, although CRFL provides a 
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robustness certification against backdoors with limited magnitude, its 
resilience to attacks using triggers exceeding the threshold and adaptive 
attacks has yet to be investigated. Additionally, CRFL achieves moder-
ate efficiency due to the additional computations required during the 
inference phase. BaFFLe [138] can defend against adaptive attacks but 
requires a poisoned model rate of less than 50%. Additionally, BaFFLe 
requires extra computation and communication during the validation 
phase, resulting in low efficiency.

5.3. Review on VFLBDs

Currently, there is little research on VFLBDs. Most of them were 
proposed in studies of VFLBAs to evaluate the robustness of the attacks.

Liu et al. [89] introduced three defense mechanisms to defend 
against the gradient replacement attack that is an AggVFLBA. The first 
defense adds additional training layers to the server’s model to prevent 
the leakage of label information. The second defense employs differen-
tial privacy to mitigate the potential attack impact by introducing noise 
into the gradients. The third defense is gradient compression, which 
restricts the server to send only gradients with significant magnitudes 
to the clients, thereby preventing the leakage of label information.

Zou et al. [117] also proposed a defense mechanism against the gra-
dient replacement attack [89]. The defense is based on a label disguise 
technique, termed Confusional AutoEncoder (CAE). CAE consists of an 
encoder and a decoder, where the encoder takes the true labels as input 
and outputs fake labels, while the decoder takes fake labels as input 
and restores the original true label. During the VFL training phase, 
the active party uses the fake labels generated by the encoder and 
collaborates with the passive party for training. In the VFL inference 
phase, the active party transforms the predicted labels back using the 
trained decoder. CAE can effectively prevent label information leakage 
and defend against the gradient replacement attack by confusing the 
true gradients and labels.

Bai et al. [84] and Naseri et al. [106] applied backdoor defenses in 
centralized learning to the SplitVFL context, including Neural
Cleanse [77], Model Pruning [80], Adversarial Neuron Pruning [145], 
Sample Preprocessing Defense [146], and Anti-Backdoor Learning [83]. 
Additionally, Bai et al. [84] developed an adaptive defense against 
VILLAIN they proposed, which neutralizes the unknown trigger by con-
volutional operations. Naseri et al. [106] performed anomaly detection 
over the feature embeddings of each class to detect backdoors. How-
ever, experimental results show that none of these defenses effectively 
countered their proposed attack.

He et al. [85] designed two anomaly detection methods to evaluate 
the robustness of their proposed attack. The first method is to filter 
out local embeddings that exhibit anomalous in the distributions of 
length and the element values. The second method is based on reverse 
engineering. This method constructs reversed triggers for each class. 
Then, it performs anomaly detection for the reversed triggers. If one or 
more triggers deviate from the distribution of other reversed triggers, 
the model should be infected.

Discussion: The defenses discussed above can be broadly catego-
rized into two types: those targeting intermediate computation results, 
such as embeddings and gradients, and those focusing on the model 
itself. However, these defenses demonstrate limited effectiveness in 
countering existing VFLBAs, which may be attributed to the following 
factors. First, in VFL, since both training and inference rely heavily 
on intermediate computation results from parties, defenses targeting 
these intermediate results often involve a trade-off between model per-
formance and defense effectiveness. Second, defenses focusing on the 
model are typically adapted from those proposed for centralized learn-
ing. However, due to the split nature of models in VFL, the effective-
ness of these defenses may be significantly compromised. Additionally, 
while CAE [117] is suitable for the VFL setting and avoids compromis-
ing intermediate results, its effectiveness is limited to defending against 
the gradient replacement attack [89].
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6. Open issues and future research directions

In this section, according to the above literature review on FLBAs 
and FLBDs, we respectively summarize open issues on these two lines of 
studies. Subsequently, we propose potential future research directions 
by analyzing the underlying causes of these issues.

6.1. FLBAs

6.1.1. Attack practicality
(1) Open Issues: Existing research has paid limited attention to the 

practicality of attacks, such as the attack dynamicity and the backdoor 
durability. Dynamic attacks aim to dynamically execute optimal attack 
strategies based on the global model’s state, and attacks with durable 
backdoors seek to maintain stable attack performance even after the 
attack has ceased. Achieving both criteria in an attack typically results 
in superior practicality. Given that most current studies achieve strong 
attack performance, these two criteria related to attack practicality 
become especially significant. However, among the studies reviewed, 
only one [95] achieves both attack dynamicity and backdoor durability. 
The reason these criteria are often overlooked may stem from the as-
sumption that the attack scenarios in existing research are generalized, 
overlooking extreme attack conditions — such as the adversary having 
a limited number of attack attempts and the server deploying various 
dynamic defense mechanisms. Yet, such extreme attack scenarios are 
still possible in real-world environments.

(2) Future Research Directions: As a result, developing FLBAs 
with attack dynamicity and backdoor durability represents a signifi-
cant direction in future research. Regarding attack dynamicity, Future 
research could utilize techniques such as reinforcement learning or 
game theory to dynamically adjust attack strategies. Additionally, fu-
ture research could focus on developing techniques that infer potential 
defense mechanisms based on dynamic changes in the global model. 
This approach would enable malicious clients to strategically employ 
attack strategies to effectively bypass these defenses. As for backdoor 
durability, future work should explore the underlying factors affecting 
backdoor durability and utilize these insights to guide the development 
of effective and stable FLBAs. Moreover, in the context of FLBD, dy-
namic defenses and promoting backdoor unlearning could offer a novel 
perspective for mitigating the impact of advanced attacks.

6.1.2. Efficiency and robustness
(1) Open Issues: The trade-off between efficiency and robustness 

presents a significant challenge. A review of existing studies indi-
cates that highly robust attacks often suffer from low efficiency. This 
is primarily because achieving strong robustness typically requires 
considerable time and resource overhead, such as minimizing the dif-
ferences between poisoned and benign model updates across various 
features [66,99,100] or integrating multiple defense evasion strate-
gies [102]. In contrast, some simple yet effective attacks [67,68] exhibit 
high efficiency but may lack robustness. Currently, there is no flexible 
strategy that balances efficiency and robustness.

(2) Future Research Directions: There is an urgent need to explore 
strategies that can effectively balance efficiency and robustness. A 
practical approach for balancing efficiency and robustness is to adopt 
appropriate attack strategies according to the actual local environment. 
Specifically, malicious clients with abundant computational resources 
(e.g., large institutions or enterprises) are capable of launching robust 
and complex backdoor attacks. Conversely, lightweight attacks are 
mostly adopted by resource-constrained malicious clients. Furthermore, 
collusion attacks present another viable strategy: when a large number 
of malicious clients are compromised, their coordinated efforts can 
significantly enhance both the efficiency and robustness of attacks. 



Z. Li et al. Information Fusion 123 (2025) 103248 
6.1.3. Attack imperceptibility
(1) Open Issues: Attack imperceptibility is often overlooked in 

VFLBAs. To date, only one study [85] has achieved attack impercepti-
bility in VFLBAs. In VFL, backdoor attacks may cause malicious clients 
to generate significantly anomalous intermediate representations due 
to manipulated sample features or models. Without proper constrained, 
these anomalies could lead to the detection of malicious clients, result-
ing in attack failure. Therefore, ensuring imperceptibility in VFLBAs is 
of paramount importance.

(2) Future Research Directions: In VFL, the intermediate represen-
tations generated by clients evolve dynamically during training. There-
fore, imperceptible attacks can be achieved by dynamically constrain-
ing poisoned intermediate representations. For instance, an adversary 
could restrict the norm of the poisoned representations to fall within 
the median range of all benign intermediate representations, effec-
tively hiding them among benign ones. Furthermore, triggers could be 
adaptively adjusted based on intermediate representations to enhance 
both the effectiveness and imperceptibility of the attack. Additionally, 
increasing the diversity of poisoned intermediate representations could 
further improve attack imperceptibility.

6.1.4. Backdoor attacks on FTL
(1) Open Issues: There is a research gap regarding backdoor attacks 

on FTL. In FTL, datasets from different participants have neither the 
same sample IDs nor common feature spaces. Therefore, malicious 
participants encounter significant challenges in obtaining sufficient 
knowledge to execute backdoor attacks in FTL. Consequently, exploring 
how to execute backdoor attacks in FTL represents a novel open issue. 
Additionally, research on FLBAs across various applications, such as 
natural language processing and speech recognition, remains limited.

(2) Future Research Directions: Investigating how to implement 
backdoor attacks in FTL represents a novel research topic in the future. 
Future studies could draw insights from attack strategies in HFL and 
VFL, and explore their applications in FTL. Furthermore, researching 
FLBAs for different applications is a beneficial direction for future stud-
ies. Researchers could leverage techniques used for backdoor attacks in 
centralized learning for different applications to redesign approaches 
suitable for FL.

6.2. FLBDs

6.2.1. Secure aggregation compatibility
(1) Open Issues: None of the existing pre-aggregation and in-

aggregation defense mechanisms are compatible with security aggre-
gation techniques. Secure aggregation enhances the privacy of FL sys-
tems by encrypting local model updates, effectively defending against 
privacy threats such as member inference attacks [147] and model 
inversion attacks [148]. However, current pre-aggregation and in-
aggregation defense mechanisms rely on statistical analysis or mod-
ification of local model updates in plaintext, which renders them 
incompatible with secure aggregation.

(2) Future Research Directions: Given that both robustness and 
privacy are crucial for FL systems, it is imperative to develop FLBDs 
that are compatible with secure aggregation. One intuitive approach 
to achieve this goal is to develop local training or post-aggregation 
defense mechanisms that avoid analyzing or modifying local model up-
dates. Additionally, future research should focus on developing Privacy-
Preserving Federated Learning (PPFL) frameworks that are compatible 
with FLBDs. For instance, Ma et al. [149] proposed a privacy-preserving 
defense strategy called ShieldFL, which utilizes two-trapdoor homo-
morphic encryption to resist encrypted model poisoning without com-
promising privacy in PPFL.
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6.2.2. Restriction on the poisoned model rate
(1) Open Issues: Most existing HFLBDs are only effective at low 

poisoned model rates, limiting their applicability in practical scenar-
ios. This limitation arises because these defense mechanisms rely on 
statistical methods to identify poisoned model updates, rendering them 
ineffective at high poisoned model rates.

(2) Future Research Directions: Developing defense mechanisms 
that are independent of the poisoned model rate is a promising research 
direction. Future research could focus on identifying poisoned model 
updates by analyzing the historical model updates of each client, 
thereby avoiding the requirement for statistical analyses of all model 
updates. For example, the direction or magnitude of a client’s historical 
model updates could be monitored. A model update that deviates signif-
icantly from historical updates in either direction or magnitude may be 
indicative of an anomaly. Additionally, future research could focus on 
eliminating potential backdoors in the global model by modifying the 
global model itself, rather than concentrating on local model updates. 
Defense mechanisms based on backdoor removal in centralized learn-
ing may provide valuable insights for this approach, such as Neural 
Attention Distillation [81] and Anti-Backdoor Learning [83].

6.2.3. VFLBDs
(1) Open Issues: There is a lack of extensive research on backdoor 

defense mechanisms specifically tailored for VFL. The existing VFLBDs 
are neither universal nor effective, rendering them susceptible to the 
current VFLBAs. Consequently, there is an urgent need for further 
investigation to develop robust and practical backdoor defenses specif-
ically tailored for VFL. Additionally, due to differing defense strategies 
employed by VFLBDs and HFLBDs, the evaluation criteria for VFLBDs 
require further development.

(2) Future Research Directions: Research on VFLBDs is becom-
ing an urgent topic. Previous studies have adapted backdoor defense 
mechanisms from centralized learning and HFL to VFL. However, their 
defense performance remains significantly limited. Therefore, there is a 
critical need for effective defense mechanisms specifically tailored for 
VFL. For instance, VFLBDs could employ anomaly detection techniques 
to detect and remove poisoned embeddings. Furthermore, future re-
search could explore the application of backdoor defense strategies on 
HFLBDs in VFL, including robust aggregation, pruning, and certified 
robustness.

6.2.4. Attack resilience
(1) Open Issues: Existing research on FLBDs primarily focuses on 

defending against fixed-trigger and static backdoor attacks [66–68,68], 
while neglecting the evaluation of defense performance against trigger-
optimization attacks [99–101] and dynamic backdoor attacks [95,102]. 
In addition, the adaptive attacks assumed in existing FLBDs do not 
encompass trigger-optimization attacks and dynamic attacks. These 
advanced attacks exhibit strong effectiveness and robustness and have 
been widely proposed in recent years. The resilience of FLBDs to 
existing advanced attacks requires further investigation.

(2) Future Research Directions: Future studies should focus on 
effectively countering advanced attacks such as trigger-optimization 
attacks and dynamic backdoor attacks. Future research could draw 
insights from these attacks to inform the design of resilient defense 
mechanisms. For instance, a prerequisite for an adversary to launch 
a dynamic backdoor attack is having full knowledge of the global 
model’s dynamic changes. Therefore, a possible defense strategy is to 
restrict the client’s access to non-essential parameters of the global 
model during training, thereby preventing the adversary from obtaining 
critical dynamic information. 
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6.2.5. Defense mechanisms for practical applications
(1) Open Issues: Although existing FLBDs have demonstrated ef-

fectiveness against FLBAs, their deployment in practical applications 
remains uncertain. Practical FL applications, e.g., in wireless commu-
nications and social networks, are vulnerable to a wide range of attacks, 
such as adversarial examples [150,151], poisoning attacks [152,153], 
and privacy attacks [154,155]. In such scenarios, the defender faces 
significant challenges, as specific attack strategies are often unknown in 
advance, and deploying tailored defense mechanisms for every possible 
attack is impossible due to resource constraints. Consequently, there is 
an urgent need to deploy general and effective defense mechanisms.

(2) Future Research Directions: Trust evaluation, which quanti-
fies the trustworthiness of an entity by considering trust influencing 
factors [156,157], may provide a general security solution for practical 
FL applications. Currently, a wide variety of trust evaluation algorithms 
have been proposed, demonstrating the ability to accurately assess the 
trustworthiness of clients in FL systems [158]. By leveraging these 
algorithms, clients with low trustworthiness can be identified and 
excluded, thereby mitigating potential security threats. Furthermore, 
the performance of trust evaluation algorithms in defending against 
specific attacks can be enhanced by incorporating additional factors 
that influence trustworthiness. For instance, the direction of model 
updates provided by clients is a critical factor in detecting backdoor 
attacks. Integrating this factor into trust evaluation algorithms can 
significantly improve their effectiveness in defending against backdoor 
attacks. Therefore, future research could focus on identifying key fac-
tors for detecting attacks and integrating them into trust evaluation 
algorithms to develop general and effective defense solutions for prac-
tical FL applications. Trust evaluation on the local models produced by 
the clients can also help in generating the global model in a trustworthy 
way. 

7. Conclusion

In this paper, we conducted a comprehensive survey on current 
FLBAs and FLBDs. First, we introduced the basic knowledge related to 
FL, backdoor attacks, and defense mechanisms, as well as the threat and 
defense models for FLBAs and FLBDs, respectively. Then, we proposed 
two sets of evaluation criteria to evaluate the performance of FLBAs and 
FLBDs, respectively. Subsequently, we proposed taxonomies of FLBAs 
and FLBDs from different perspectives, respectively. By employing 
our proposed criteria and taxonomies, we thoroughly reviewed exist-
ing studies. Additionally, we discussed backdoor-based watermarking 
methods in FL. Finally, according to the review, we delved into several 
open issues and further indicated future research directions to promote 
the development of trustworthy FL.
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