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Federated Learning (FL) is a distributed machine learning framework that enables the collaborative training of
machine learning models by multiple entities. However, FL is vulnerable to various potential risks, especially
backdoor attacks. A backdoor attack aims to implant hidden backdoors into a global model by compromising
one or more clients and making them provide poisoned model updates. Consequently, the global model
misclassifies inputs with triggers as adversary-desired classes/labels while performing well on benign inputs.
Despite its severity, existing literature lacks a comprehensive review on backdoor attacks and their defense
mechanisms of FL, especially for vertical FL. This paper comprehensively reviews and evaluates recent advances
in backdoor attacks and defense mechanisms on FL. We first introduce foundational concepts about FL,
backdoor attacks, and defense mechanisms, along with their respective security models. Then, we propose two
sets of evaluation criteria that a sound backdoor attack and a defense mechanism should meet, respectively.
After that, we provide taxonomies of existing backdoor attacks and defense mechanisms of FL and review them
by employing the proposed criteria to evaluate their pros and cons. We also explore a positive application of
backdoors in FL, i.e., backdoor-based watermarking. Finally, we discuss a number of open issues and suggest
promising future research directions.

1. Introduction the global model by compromising one or more training clients to

provide poisoned model updates. The poisoned global model misclas-

Advances in machine learning (ML) have enabled machines to
achieve high levels of performance in various tasks, such as image
recognition [1-3], natural language processing [4-6], and time series
forecasting [7-9], based on substantial amounts of high-quality data.
Traditional centralized ML requires collecting vast amounts of data
from entities such as user devices, companies, and institutions, to train
the ML models, while concerns over data privacy impede the sharing
of the training data among different entities. This has motivated the
development of Federated Learning (FL) [10]. FL is a distributed ML
framework that allows clients to collaborate on model training by
providing model updates to a central server instead of sharing raw data,
thereby preserving data privacy during collaborative training. In recent
years, the numerous advantages of FL have driven its widespread adop-
tion across various domains, including industrial engineering [11,12],
healthcare [13-16] and wireless communications [17-19].

Nevertheless, the distributed nature of FL introduces new attack
surfaces due to untrusted or malicious clients. A typical threat is an
FL Backdoor Attack (FLBA) that introduces hidden backdoors into

sifies malicious inputs as specific classes desired by an adversary,
while performing correctly on benign inputs. An example of an FLBA
targeting traffic sign recognition is presented in Section 2.2. FLBAs are
characterized by their stealthiness and harmfulness. On the one hand,
the invisible nature of a malicious client’s local training process to
other participants makes such attacks difficult to detect. On the other
hand, the compromised model performs well on normal tasks, but once
the backdoor is triggered, it can produce critical errors. In particular,
FLBAs deployed in safety-critical applications, such as finance and
healthcare, could result in significant societal harm. To protect FL from
such attacks, a variety of FL Backdoor Defenses (FLBDs) have been
proposed to detect or mitigate FLBAs. Fig. 1 presents the development
timeline of FLBAs, FLBDs, and backdoor-based watermarking methods
in FL. Backdoor attacks were first introduced into FL in 2018, soon
followed by the emergence of defense mechanisms and backdoor-
based watermarking methods against FL. Since then, these topics have
attracted considerable attention, with a surge of research emerging,
especially in the past three years.
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Fig. 1. A Timeline of FLBAs and FLBDs.
Table 1
Comparison of our survey with other existing surveys.
Ref Year Security Model Criteria  Taxonomy FLBAs Review FLBDs Review
HFL-BAs VFL-BAs Positive Applications HFL-BDs VFL-BDs

[20] 2022 () O O [ ] @) O [ @)
[21] 2022 O O © [ ] @) O [ ] @)
[22] 2023 () O O [ ] @) O [ ] @)
[23] 2024 () © ] @) @) O O @)
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[25] 2023 © O ] [ ] @) O [ @)
[24] 2023 O [ [ [ ] ©) O [ J O
[26] 2024 () (] ] [ (D) O [ ] @)
Ours 2025 [ ] [ [ ([ ([ [ [ ] [ J

[ 2 Fully supported; [ ) Partially supported; O: Not supported; FLBAs: Backdoor Attacks against FL; HFLBAs: Backdoor Attacks against Horizontal
FL; VFLBAs: Backdoor Attacks against Vertical FL; FLBDs: Backdoor Defenses against FL; HFLBD: Backdoor Defenses against Horizontal FL; VFLBD:

Backdoor Defenses against Vertical FL;

and defenses in Wireless FL.

There are several surveys [20-27] of the literature about FLBAs
and FLBDs. In [20-23] extensive surveys on adversarial attacks and
defense mechanisms against FL can be found, including a discussion
of FLBAs and FLBDs. However, these studies just provide a general
discussion of adversarial attacks against FL and defenses, such as
adversarial examples, poisoning attacks, and FLBAs without focusing
on each specific type of attack. On the other hand, Wan et al. [27]
focus narrowly on backdoor attacks and defense mechanisms within
wireless FL, overlooking backdoor attacks and defense mechanisms
for Vertical FL. Additionally, they do not define a defense model
and discuss the various knowledge required for defense. Other sur-
veys [24-26] are highly relevant to our paper, but the defense model
of FLBDs is not studied. Specifically, the literatures [25,26] lack a
detailed description of the defense model and the literature [24] does
not introduce the threat model of FLBAs and the defense model of
FLBDs. Moreover, they conduct a comprehensive review on Backdoor
Attacks against Horizontal Federated Learning (HFLBAs) and Backdoor
Defenses against Horizontal Federated Learning (HFLBDs), but over-
look relevant research on Vertical Federated Learning (VFL). Among
them, literature [26] only addresses several backdoor attacks against
one specific VFL architecture, without exploring other architectures
and defense mechanisms in VFL. In particular, they focus solely on
the malicious applications of backdoors in FL, without discussing the
potential positive applications of backdoors. Table 1 presents a detailed
comparison between our survey and related surveys.

In this paper, we perform a thorough review on both FLBAs and
FLBDs. Specifically, we first introduce the basic knowledge of FL,
backdoor attacks, and defense mechanisms, along with the security
models of FLBAs and FLBDs, including a threat model and a defense

: Studies focusing on adversarial attacks and defenses in FL.

: Studies focusing on backdoor attacks

: Studies focusing on backdoor attacks and defenses in FL.

model. Second, we propose two sets of evaluation criteria regard-
ing FLBAs and FLBDs, respectively, focusing on their effectiveness,
robustness, practicality, and efficiency. Third, we categorize FLBAs
and FLBDs into the ones targeting at HFL and the ones targeting
at VFL, respectively. The categorization is further refined according
to implementation approaches. Subsequently, we comprehensively re-
view existing studies following the proposed taxonomies and analyze
their pros and cons by employing the proposed evaluation metrics. In
addition to the malicious applications of backdoors, backdoor-based
watermarking methods that are potential positive backdoor applica-
tions are discussed. In the end, we shed light on several open issues
and suggest future research directions. We intend to help researchers
and developers capture the recent advances, open issues, and future
research directions of FLBAs and FLBDs. To summarize, the main
contributions of this paper are as follows:

» We propose two sets of evaluation criteria that should be met by
sound FLBAs and effective FLBDs, respectively, followed by two
taxonomies of FLBAs and FLBDs, respectively.

We conduct a comprehensive review on existing FLBAs and FLBDs
following their taxonomies by employing the proposed evaluation
criteria to analyze their pros and cons. Additionally, we explore
backdoor-based watermarking methods in FL.

We point out several open issues derived from our serious survey
and further propose future research directions to promote the
development of trustworthy FL.

The remainder of this survey is organized as follows. In the next
section, we introduce FL, including its categories and processes, an
overview of backdoor attacks and defense mechanisms, as well as the
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Fig. 2. The different data distributions of HFL, VFL, and FTL.

threat model of FLBAs and the defense model of FLBDs. Section 3
presents two sets of criteria for evaluating the performance of FLBAs
and FLBDs, respectively. In Section 4, we provide a taxonomy of FLBAs,
followed by a thorough review on FLBAs and a discussion on backdoor-
based watermarking methods in FL. In Section 5, the taxonomy of
FLBDs is proposed, followed by a comprehensive review on FLBDs. On
the basis of the literature review, we identify open issues and point out
future research directions in Section 6. Finally, we draw a conclusion
in the last section.

2. Background

In this section, we briefly introduce FL, including its categories and
processes, provide a brief overview on backdoor attacks and defenses,
and introduce their threat models and defense models, respectively.

2.1. Federated learning

FL is a distributed machine learning framework that allows clients
to collaborate on model training by providing model updates, such
as parameters, gradients, and intermediate layer outputs, to a central
server instead of sharing raw data, thereby preserving data privacy.
Furthermore, FL allows a variety of clients to contribute, even if their
local data is non-Independent and Identically Distributed (non-IID),
which helps to collaboratively train a general global model. Overall, FL
provides a significant advancement in the field of machine learning by
enabling privacy-preserving collaboration among diverse participants,
leading to robust and general models.

As a flexible framework, FL is often integrated with other learning
paradigms to safeguard data privacy in various learning scenarios. For
example, federated semi-supervised learning [28] integrates FL with
semi-supervised learning [29], allowing multiple clients to leverage
unlabeled data for learning without exposing data privacy. Similarly,
federated edge learning [30] incorporates FL with mobile edge com-
puting [31], effectively reducing communication latency between de-
vices while preserving data privacy. Beyond these, emerging paradigms
such as federated reinforcement learning [32] and federated meta-
learning [33] continue to expand the scope of FL applications. It is
worth mentioning that this paper primarily focuses on FL as a whole
rather than on a specific cross-learning scenario.

2.1.1. Categories of FL

Based on the distribution characteristics of participants’ local data,
FL can be categorized into Horizontal Federated Learning (HFL), Verti-
cal Federated Learning (VFL), and Federated Transfer Learning (FTL),
as shown in Fig. 2.

(1) Horizontal Federated Learning (HFL) applies to such scenarios
where participants’ local data share the same features but have different
sample IDentifiers (IDs). It enhances the performance of a global model
by extending the training dataset. For example, multiple banks in differ-
ent regions, despite having similar business operations, serve different
customers. By employing HFL, these banks can collaboratively train a
highly effective financial model. HFL is currently the most prevalent
type of FL.

(2) Vertical Federated Learning (VFL) is applicable in such sce-
narios where participants’ local data share the same sample IDs but
have different features. VFL enhances the performance and generaliza-
tion ability of a global model by extending the feature dimensions of a
training dataset. For instance, a bank and an e-commerce company in
the same region respectively process the financial status and shopping
records of customers in that region. They can collaboratively train a
product recommendation model via VFL. Currently, two popular VFL
architectures have been proposed [34], namely AggVFL and SplitVFL. A
detailed introduction to these architectures is provided in Section 2.1.2.

(3) Federated Transfer Learning (FTL) applies to such scenarios
where participants’ local data share few sample IDs and features. FTL
enhances the performance of a target participant’s model by leveraging
the learning experiences of other participants. For instance, a bank and
an e-commerce company in different regions not only have distinct
business operations but also serve different customers. The e-commerce
company can train a recommendation model based on the shopping
records of its users, while the bank may struggle to train a recom-
mendation model for its financial products due to insufficient data. By
employing FTL, the bank can train an effective recommendation model
by transferring the e-commerce company’s learning experience.

2.1.2. FL process

To the best of our knowledge, there is currently no research on back-
door attacks and defenses against FTL, thus we focus on introducing
the processes of HFL and VFL in this subsection. HFL and VFL typically
consist of a central server and numerous clients. Fig. 3 illustrates the
processes of HFL and VFL (including AggVFL and SplitVFL).

(1) HFL: In HFL, each client processes its local data, including
samples and labels. The server is responsible for aggregating updates
provided by clients and distributing the aggregated updates, without
performing model training itself. The purpose of HFL is to enable
clients to collaboratively train a global model that can be independently
deployed on each client. The process of HFL involves repeating the
following four steps until either the global model converges or a
predefined number of iterations is reached.

@ Client Selection and Distribution: The server selects a subset
of clients to participate in the current round of training and distributes
the global model parameters [35] or gradients [36] to them.

@ Local Training: Upon receiving the global model parameters or
gradients, each selected client utilizes them along with its local data to
retrain its local model.

® Updates Uploading: Each selected client uploads its local model
parameters or gradients to the server.

@ Central Computation: The server aggregates the local model
parameters or gradients provided by the selected clients and initiates a
new round of training.

(2) VFL: In VFL, each client (referred to as a passive party) processes
a subset of data features without labels, while the server (referred to
as an active party) holds the labels, in some cases, additional data
features. The active party initiates FL tasks and plays a dominant role in
both training and prediction. Passive parties contribute data features to
enhance model performance. Collaboration between the active and pas-
sive parties is essential for both model training and inference, as neither
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Fig. 4. An example of a backdoor attack.

party can independently complete these tasks. Furthermore, VFL can
be further divided into two architectures: AggVFL and SplitVFL. Their
processes are similar to that of HFL, with slight differences. The key
difference between AggVFL and SplitVFL is whether the active party
possesses a trainable model [34].

AggVFL: In AggVFL, each party’s local model calculates the logits of
local data and uploads them to the active party. The active party aggre-
gates the logits provided by all parties and calculates loss and gradients
based on labels. The active party then distributes the gradients to each
passive party, facilitating local model training.

SpliteVFL: In SplitVFL, based on the concept of split learning [37],
an entire model is divided into multiple bottom models and a top
model. Each passive party maintains a bottom model, while the ac-
tive party holds the top model. Initially, the bottom model of each
passive party calculates intermediate representations (also known as
embeddings) for local data and uploads them to the active party.
The active party then aggregates the embeddings provided by passive
parties and trains the top model using these embeddings along with the
labels. Gradients from the first layer of the top model are subsequently
distributed to each passive party to update and train their respective
bottom models.

2.2. Backdoor attacks

A backdoor attack aims to implant one or more hidden backdoors
into a model so that the poisoned model performs well on benign
inputs but misclassifies poisoned inputs (i.e., inputs with triggers) as
an adversary-desired class. The first backdoor attack, named BadNets,
was introduced in the image classification task by Gu et al. [38] in
2018. BadNets implants backdoors into the model via poisoning its
dataset and consists of three stages: setting, training, and inference,
as illustrated in Fig. 4. First, an adversary selects an adversary-desired
target label (e.g., “speed limit”) and designs a trigger pattern (e.g., a

yellow square positioned in the bottom-right corner). Next, the ad-
versary embeds the trigger into a subset of benign training images
and modifies their label to the target label. During training on the
modified dataset, a backdoor is covertly implanted into the model.
Once deployed for traffic sign recognition, the poisoned model performs
accurately on benign signs but misclassifies any sign with the trigger
as "speed limit”. This vulnerability poses a significant threat to traffic
safety.

Backdoor attacks have attracted significant attention since the intro-
duction of BadNets, leading to substantial advancements. For instance,
to enhance the stealthiness of backdoor attacks, previous studies have
focused on designing invisible triggers [39-41] or label-consistent back-
door attacks [42,43]. Label-consistent attacks ensure that the content
of a sample aligns with its label, thereby enhancing their stealthiness.
Meanwhile, the effectiveness of backdoor attacks has been signifi-
cantly improved through various approaches, such as trigger optimiza-
tion [44-46] and direct modification of model parameters [47-49].
Moreover, backdoor attacks have been effectively extended to vari-
ous domains, including natural language processing [50-52], speech
recognition [53-55], video recognition [56-58], semi-supervised learn-
ing [59,60] and so on.

Although backdoors were initially designed for malicious attacks,
researchers have discovered that they can be used positively, such as
adversarial example detection [61], evaluation of explanation meth-
ods [62], and dataset/model ownership verification [63-65]. Among
these applications, dataset/model ownership verification is particu-
larly significant due to the growing urgency of protecting intellectual
property rights for datasets and models. Dataset/model ownership veri-
fication is implemented by backdoor-based watermarking. Fig. 5 shows
an application example of dataset ownership verification, which con-
sists of two stages: watermark embedding and ownership verification.
In the watermark embedding stage, a dataset owner creates a poisoned
dataset by embedding a trigger into a subset of samples. Thus, any
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Fig. 6. Examples of an HFLBA and a VFLBA. In these examples, FL consists of two clients and one server, with client B serving as the malicious client. In the VFLBA, each of the
two clients holds half of the features of the samples (the non-transparent parts in Fig. (b)), while the server holds the labels.

model trained on the poisoned dataset is unintentionally watermarked
during training. In the ownership verification stage, a verifier inputs
samples with triggers into a target suspicious model. If the model’s
output matches the predefined label specified by the dataset owner,
it indicates that the intellectual property rights of the dataset owner
have been infringed. Notably, the model ownership verification process
follows a similar approach.

Except for centralized learning, backdoor attacks have been intro-
duced into FL in recent years. Numerous studies have suggested that
FL is susceptible to backdoor attacks due to the difficulty in ensuring
that every participant is trusted [66-69]. In FL, an adversary can
implant hidden backdoors into the global model by compromising
one or more clients, known as malicious clients, and making them
provide poisoned model updates to the server during the training
phase. Consequently, during the inference phase, the global model
misclassifies poisoned inputs as specific classes, while performing well
on benign inputs. For instance, as illustrated in Fig. 6, an adversary
compromises a client and launches a backdoor attack. In an HFLBA,
the adversary poisons random samples and assigns them target labels,
while in a VFLBA, the adversary only poisons the target-label samples
due to the inaccessibility of sample labels. Subsequently, in an HFLBA,
the adversary trains a poisoned local model, while in a VFLBA, the
adversary trains the bottom model to obtain poisoned intermediate
representations. During server-side aggregation of model updates or
intermediate representations from clients, the backdoor embedded in
the poisoned local model is covertly transferred to the global model.
Consequently, backdoor attacks pose a serious threat to the security of
FL.

2.3. Backdoor defenses

To mitigate the threat of backdoor attacks, various backdoor de-
fenses have been proposed. Current backdoor defenses can be divided
into backdoor detection methods and removal methods [70-72]. Back-
door detection aims to determine whether an input or model has
been compromised. Previous studies identify backdoors by analyzing
deviations of inputs in the feature space [73-75] or by detecting
prediction anomalies on test inputs [76]. Additionally, reverse engi-
neering techniques are used to reconstruct the trigger and identify the
target label of the backdoor attack [77-79], with Neural Cleanse [77]
being a representative work. Backdoor removal focuses on erasing
the backdoors within a model while preserving its performance on
benign inputs. Previous studies fine-tune the model using clean inputs
to conduct backdoor removal, with representative studies including
Fine-Pruning [80] and Neural Attention Distillation [81]. Additionally,
some studies try to train a benign model on compromised inputs via
adjusting the model’s training process, such as Adversarial Unlearn-
ing of Backdoors via Implicit Hypergradient [82] and Anti-Backdoor
Learning [83].

While the above-mentioned defenses perform well in centralized
learning, transferring them to FL scenarios faces the following chal-
lenges. First, in FL, the defender lacks full access to the training
data and the entire model training process, rendering defense mecha-
nisms that require comprehensive knowledge ineffective. Second, each
client’s local data may be non-IID, which can undermine the effec-
tiveness of defense mechanisms, particularly those based on anomaly
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detection. Third, FL typically operates under limited communication
and computational resources, restricting the application of defense
mechanisms that entail significant overhead.

2.4. Threat and defense models

In this subsection, we introduce the threat model applied by FLBAs
and the defense model used in FLBDs, which should be made clear
when launching FLBAs and defending them, respectively. Fig. 7 summa-
rizes the goal, knowledge, and capability of the threat and the defense
models.

2.4.1. Threat model

Existing FLBAs typically assume an adversary capable of compro-
mising one or more clients but lacking control over the server. In
this paper, we discuss the threat model from three aspects: adversarial
goals, knowledge, and capability, under this assumption.

Adversary Goals. In an FLBA, an adversary aims to implant hid-
den backdoors into a global model via manipulating malicious model
updates. Consequently, the global model accurately classifies benign
inputs, whereas poisoned inputs with triggers are assigned to a target
class.

Adversary Knowledge. Existing FLBAs typically assume either a
regular adversary or a powerful adversary, depending on the knowl-
edge possessed by the adversary.

A regular adversary has full knowledge of malicious clients, includ-
ing their local data, local training process, and local model parameters.

A powerful adversary also has full knowledge of malicious clients,
and additionally, it processes extra knowledge, such as extra datasets
[68,84,85] and the number of clients [66].

Adversary Capability. The adversary can manipulate and modify
the local data and local models of the malicious clients based on its
knowledge. Beyond this, it cannot do anything. Additionally, if the
adversary controls multiple malicious clients, it can conduct collusion
and non-collusion attacks.

Non-collusion Attack: In a non-collusion attack, each malicious client
performs a backdoor task independently, unaware of the existence of
other malicious clients.

Collusion Attack: In a collusion attack, malicious clients share their
local data and models to collaboratively execute a backdoor task.
Although this requires a more capable adversary than a non-collusion
attack, it tends to be more effective and stealthy.

2.4.2. Defense model

In FL, the server is typically regarded as a trusted entity. Conse-
quently, existing FLBDs assume that the server implements defense
mechanisms and acts as a defender. The following discussion on defense
models is based on this assumption and encompasses defender goals,
knowledge, and capability.

Defender Goals. In an FLBD, a defender aims to prevent the im-
plantation of backdoors into a global model or to detect and eliminate
existing backdoors, while maintaining the global model’s performance
on benign inputs.

Defender Knowledge. Existing FLBDs typically assume a regular or
powerful defender, according to the defender knowledge.

A regular defender has comprehensive knowledge of the server, such
as the global model, the local model updates submitted by clients, and
the aggregation process.

A powerful defender processes not only full knowledge of the server
but also extra information, such as extra training datasets [69,86,87]
or model training processes of trusted clients [88].

Defender Capability. The defender can manipulate and modify the
knowledge in its possession, but cannot take any further action.

3. Evaluation criteria

In this section, we propose two sets of evaluation criteria for FLBAs
and FLBDs, respectively, as shown in Fig. 8. Note that these two sets of
evaluation criteria are summarized from existing studies with essential
extension and justification.

3.1. Evaluation criteria for FLBAs

We propose a set of evaluation criteria for FLBAs in terms of four
aspects: effectiveness, robustness, practicality, and efficiency.

3.1.1. Effectiveness

Effectiveness measures the attack performance of FLBAs. An effec-
tive FLBA allows a poisoned global model to perform well on benign
inputs while misclassifying poisoned ones. Two metrics are employed
to assess the effectiveness of FLBAs.

Attack Success Rate: It stands as an intuitive metric to evaluate
the effectiveness of a backdoor attack. It is the probability that a
backdoored model identifies a poisoned input as a target class, with
values ranging from O to 1. A higher attack success rate indicates
greater attack effectiveness. Some studies use alternative terms, such
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as backdoor accuracy [66,89-91] to express a similar concept to attack
success rate.

Main Task Accuracy: It represents the accuracy of a global model
on benign inputs. Existing studies typically measure the change in main
task accuracy before and after the application of an FLBA to assess its
impact on the main task. If an FLBA causes a significant decrease in
main task accuracy, users may refrain from using the global model,
leading to attack failure. Therefore, an effective FLBA should minimize
the drop in the global model’s main task accuracy or even cause it to
increase. Additionally, alternative terms, such as benign accuracy [90—
92], clean data accuracy [84], and testing accuracy [87,93,94], are
used in some studies to convey a similar concept to main task accuracy.

3.1.2. Robustness

As FL evolves, FL systems typically employ various defense mech-
anisms to mitigate potential threats. Therefore, a sound FLBA should
ensure that the poisoned model updates provided by the malicious
clients are imperceptible to the defender, and bypass as many defense
mechanisms as possible. Based on this perspective, we propose the
following two criteria to assess the robustness of FLBAs.

Attack Imperceptibility: It indicates the ability of an FLBA to
remain similar between poisoned and benign model updates. An FLBA
that exhibits attack imperceptibility is more likely to bypass defense
mechanisms compared to one that does not. In HFLBAs, modifying the
loss function or directly constraining poisoned model updates are com-
mon methods for achieving attack imperceptibility. VFLBAs typically
constrain poisoned intermediate representations directly.

Defense Resilience: It refers to the ability of an FLBA to circum-
vent defense mechanisms, encompassing not only backdoor defense
mechanisms tailored for backdoor attacks but also robust aggregation
algorithms. The more advanced and numerous defense mechanisms an
FLBA can withstand, the more resilient and damaging it becomes.

3.1.3. Practicality

Practicality reflects the ability of an FLBA to be used in practical
scenarios. A practical FLBA should be capable of achieving superior
and durable attack performance on the global model, even in real-world
scenarios with limited attack opportunities. We propose the following
two criteria to evaluate the practicality of FLBAs.

Attack Dynamicity: It refers to an FLBA’s capability to optimize
the trigger or adapt its attack strategy dynamically according to the
global model’s state. For example, in dynamic FLBAs, if an adversary

discovers that the trigger or its attack strategy is ineffective in im-
planting backdoors into the current global model, the adversary may
dynamically optimize the trigger or adapt the attack strategy (e.g., by
scaling poisoned model updates) to achieve optimal attack performance
(i.e., high attack success rate along with high main task accuracy) in
each round. In contrast, static attacks focus exclusively on implanting
backdoors into local models without considering their impact on the
global model. Consequently, due to its dynamic adaption to the global
model, a dynamic FLBA can achieve optimal performance, which is not
the case for a static attack [95].

Backdoor Durability: It reflects the ability of a backdoor to remain
in the global model durably. When malicious clients cease providing
poisoned model updates, the backdoor in the global model is gradually
diluted by benign model updates as training and aggregation proceed,
resulting in the forgetting of the backdoor. An FLBA that satisfies
backdoor durability causes the implanted backdoor to be retained for a
considerable number of rounds, maintaining stable attack performance
even after the attack stops, which is crucial in scenarios with limited
attack opportunities. In contrast, if the FLBA does not meet the back-
door durability, the global model gradually ceases to exhibit backdoor
behavior once the attack is halted. Following previous studies [91,95],
we use Neurotoxin [90] as a benchmark: FLBAs with a slower backdoor
forgetting speed than Neurotoxin are considered durable, while those
with a faster forgetting speed are considered non-durable.

3.1.4. Efficiency

Efficiency reflects the time and resource cost required for an FLBA
to be deployed. An efficient FLBA is undoubtedly easier to be launched
and more damaging than an inefficient one. By analyzing previous
studies, we identify three primary cost factors for an FLBA: data poison-
ing, model poisoning, and extra computation (e.g., optimizing triggers
or model retraining). Consequently, we categorize FLBAs as follows:
FLBAs with only data poisoning are highly efficient; FLBAs with both
data poisoning and model poisoning or data poisoning and extra com-
putation are moderately efficient; and FLBAs with data poisoning, model
poisoning, and extra computation are low efficient.

3.2. Evaluation criteria for FLBDs

We propose a set of evaluation criteria for FLBDs also in terms of
effectiveness, robustness, practicality, and efficiency.
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3.2.1. Effectiveness

Effectiveness measures the defense performance of FLBDs. A sound
FLBD should reliably detect and eliminate existing backdoors or pre-
vent the implantation of backdoors into a global model, without de-
grading the local model’s performance on benign inputs. The following
three metrics are proposed to assess the effectiveness of FLBDs.

Detection Rate: It measures the accuracy of an FLBD in detect-
ing compromised local models. It is a direct metric for assessing the
effectiveness of an FLBD, ranging from O to 1, with higher values
indicating better performance. In addition to detection rate, other
metrics are widely used to directly evaluate the effectiveness of an
FLBD, including but not limited to True Negative Rate (TNR), True
Positive Rate (TPR), False Negative Rate (FNR), False Positive Rate
(FPR), Positive Predictive Value (PPV), and Negative Predictive Value
(NPV) [96].

Attack Success Rate: It is an intuitive metric for evaluating the
effectiveness of an FLBA, with its definition presented in Section 3.1.1.
Some studies assess the effectiveness of an FLBD by measuring the
change in attack success rate before and after the FLBD is applied. A
greater decrease in attack success rate indicates a more effective FLBD.

Main Task Accuracy: It demonstrates the accuracy of a global
model on benign inputs, as presented in Section 3.1.1. The change
in main task accuracy before and after an FLBD is employed can be
used to assess its impact on the main task. If an FLBD severely reduces
the global model’s main task accuracy, it cannot be widely adopted.
Therefore, a sound FLBD should not compromise the global model’s
main task accuracy.

3.2.2. Robustness

As research progresses, a growing number of FLBAs have been
proposed, including potent adaptive attacks. Therefore, a robust FLBD
should be capable of resisting these attacks. From this perspective, we
propose the following two criteria to evaluate the robustness of an
FLBD.

Attack Resilience: It refers to the ability of an FLBD to defend
against various FLBAs. The more advanced and numerous FLBAs an
FLBD can withstand, the more robust it is.

Adaptive Attack Resilience: It reflects the ability of an FLBD
to resist adaptive attacks. These attacks can adaptively adjust their
strategies based on the FLBDs they encounter. Specifically, in adaptive
attacks, the adversary detects the defense mechanisms deployed on
the server and sets bypassing these defenses as an additional goal
of backdoor attacks. Consequently, defending against such attacks is
challenging, and an FLBD with adaptive attack resilience demonstrates
high robustness.

3.2.3. Practicality

Practicality reflects the capability of an FLBD to be used in practical
scenarios. A practical FLBD should be compatible with various FL
security strategies and remain unrestricted by specific attack scenarios.
We propose the following two criteria to evaluate the practicality of an
FLBD.

Secure Aggregation Compatibility: It is used to measure whether
an FLBD is compatible with secure aggregation mechanisms, which
play an important role in privacy-preserving FL. The goal of secure
aggregation is to ensure that model updates provided by clients cannot
be snooped on by the server or other clients during the aggregation
process [97]. In practical scenarios, both privacy and robustness are
crucial for an FL system. Thus, an FLBD with secure aggregation
compatibility is more practical than one without it.

Unrestricted Poisoned Model Rate: It means that an FLBD’s per-
formance remains unaffected by the poisoned model rate, which de-
notes the ratio of compromised clients to the total number of clients.
An FLBD with an unrestricted poisoned model rate can be effectively
used in more severe attack scenarios, making it more practical.

3.2.4. Efficiency

Efficiency reflects the time and resource cost required to implement
an FLBD. Undoubtedly, a lightweight FLBD is more likely to be adopted.
By analyzing previous studies, we found that the primary cost factors
of an FLBD arise from extra computation and communication. Extra
computation involves extensive calculations beyond standard model
training and aggregation, such as computing the distance or similar-
ity between model updates. Extra communication refers to the extra
exchange of information between the server and clients beyond the
regular updates upload and distribution in FL, such as incorporating an
extra verification process between the server and clients. Consequently,
we categorize FLBDs as follows: those not requiring extra computation
and communication are highly efficient; those requiring only extra
computation are moderately efficient; and those requiring both extra
computation and communication are low efficient.

4. FLBA review

In this section, we first present a taxonomy of FLBAs, as shown in
Fig. 9. Then, we review studies on HFLBAs and VFLBAs, evaluating
their pros and cons based on the proposed evaluation criteria. Table
2 provides a summary and comparison of the reviewed works. While
ideal FLBAs should meet all the proposed criteria, it is challenging to
juggle them in practice. Consequently, we explore the trade-offs made
by existing studies among these criteria. Finally, we discuss a positive
application of backdoor attacks in FL: backdoor-based watermarking
methods, which represent an emerging and promising area of research.
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Table 2
Summary and comparison of FLBAs.
Target Ref Taxonomy Threat Model Robustness Practicality Efficiency Application
System
Knowledge Capability Attack Imper- Defense Attack Backdoor
ceptibility Resilience Dynamicity Durability
[68] Centralized P-® Non-collusion X NC, RFA X X High IC, NLP
Data Poi.
[95] Centralized R Non-collusion X Most v v Medium IC
Data Poi.
[67] Distributed R Collusion X FG, RFA X X High IC, PA
Data Poi.
[98] Distributed R Collusion X FG X ? Medium IC
Data Poi.
[90] In-Training R - X NC, SAD X v Medium IC, NLP
HFL Model Poi.
[91] In-Training R - X NC X v Medium IC
Model Poi.
[68] In-Training P-©® Non-collusion v NC, RFA, X X Medium IC, NLP
Model Poi. Krum, M-K
[99] In-Training R Collusion v Most X v Low IC, PA
Model Poi.
[100] In-Training R Non-collusion v Most X v Low IC
Model Poi.
[101] In-Training R Non-collusion v Most X v Low 1C
Model Poi.
[102] In-Training R Collusion v Most v ? Low IC
Model Poi.
[103] In-Training R Collusion v NG, FG, FLA, X ? Low IC
Model Poi. RFL
[66] Post-Training P-@ Non-collusion v X X X Medium IC, NLP
Model Poi.
[104] Post-Training R Non-collusion v Most X ? Low IC
Model Poi.
AggVFL [89] Data P-® - X X X ? High IC, NLP
Poisoning
[84] Data P-® - X Most X ? Medium IC, PA
Poisoning
[105] Data P-® - X GC X ? Medium IC, NLP
Poisoning
SplitVFL [106] Data P-® Collusion X NCl, DPr, AD X ? Medium IC, PA
Poisoning
[85] Data P-® - v CAE, AD X ? Medium IC, PA
Poisoning
[107] Data P-® - X GC v ? Medium IC
Poisoning
[108] Model P-® - X NC, GC X ? Low IC, NLP
Poisoning

v Satisfied; X: Unsatisfied; ‘-’: Not available; ‘?”: Not discussed; R: Regular; P: Powful; @: Public datasets; @: Knowledge about the FL system; ®: One or more target-class samples;
@: An auxiliary dataset; NC: Norm Clipping [109]; RFA: Robust Federated Aggregation [110]; M-K: Multi-Krum [111]; FG: FoolsGold [112]; SAD: Spectral Anomaly Detection
[69]; FLA: FLAME [113]; RFL: RFLBAT [114];GC: Gradient Compression [115]; NCl: Neural Cleanse [77]; DPr: Differential Privacy [116]; CAE: Confusional AutoEncode [117];
AD: Anomaly Detection; IC: Image Classification; NLP: Natural Language Processing; PA: Predictive Analytics.

4.1. Taxonomy of FLBAs

We first divide FLBAs into HFLBAs, VFLBAs, and backdoor-based
watermarking methods in FL.

4.1.1. Taxonomy of HFLBAs

HFLBAs are further categorized into data poisoning attacks and
model poisoning attacks against HFL based on different attack ap-
proaches.

(1) Data Poisoning: In a data poisoning backdoor attack, an adver-
sary aims to implant a backdoor into the global model by poisoning the
local data of malicious clients, without manipulating their local training
process. Based on the characteristics of the triggers, data poisoning can
be further divided into centralized-trigger data poisoning attacks and
distributed-trigger data poisoning attacks.

Centralized-Trigger Data Poisoning: As shown in Fig. 6, in a
centralized-trigger backdoor attack, the adversary distributes a com-
mon trigger (also known as a centralized trigger) to all malicious
clients. In the inference phase, any input with the centralized trigger
will activate the backdoor.

Distributed-Trigger Data Poisoning: In a distributed-trigger back-
door attack, the adversary divides a global trigger into multiple dis-
tributed triggers and distributes them separately to malicious clients.
Each malicious client uses its distributed trigger to poison local data. In
the inference phase, any input with the global trigger will activate the
backdoor, even if the global trigger never appeared during the training
phase. A detailed process is shown in Fig. 10.

(2) Model Poisoning: In a model poisoning backdoor attack, to im-
plant a backdoor into the global model, an adversary not only poisons
the local data of malicious clients, but also manipulates their local
training process or directly modifies local model parameters. According
to the timing of model poisoning, such attacks can be further divided
into in-training and post-training model poisoning attacks.

In-Training Model Poisoning: In-training model poisoning attacks
occur during local model training, i.e., Step @ in Fig. 3. These attacks
usually manipulate the training process of the local model.

Post-Training Model Poisoning: Post-training model poisoning
attacks occur after local model training and before model updates are
uploaded, i.e., between Step @ and Step ® in Fig. 3. These attacks
usually modify the parameters of the local model directly.
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4.1.2. Taxonomy of VFLBAs

VFLBAs can be categorized into Backdoor Attacks against AggVFL
(AggVFLBAs) and Backdoor Attacks against SplitVFL (SplitVFLBAs)
based on the architecture of VFL. These attacks can be further divided
into data poisoning attacks and model poisoning attacks, as defined in
Section 4.1.1. A detailed taxonomy is presented in Fig. 9.

4.1.3. Taxonomy of backdoor-based watermarking methods in FL

Backdoor-based watermarking methods in FL can be divided into
server-side and client-side watermarking methods, based on the initia-
tor of watermark implantation. Fig. 11 briefly illustrates the processes
involved in these two categories, where the trigger set consists of the
generated specific noise images. Both methods share two main stages
— watermark embedding and ownership verification — but differ in
the process of the watermark embedding stage.

4.2. Review on HFLBAs

We review the existing studies on HFLBAs based on the taxonomy
proposed above.

4.2.1. Data poisoning

Existing research has proposed novel approaches for data poisoning
exploiting the distributed nature of FL. Since then, these approaches
have comprehensively been improved by subsequent research.

(1) Centralized-Trigger Data Poisoning:

Bagdasaryan et al. [66] proposed the first backdoor attack against
HFL, a semantic backdoor attack. This attack employs a semantic fea-
ture shared across samples as a backdoor trigger (e.g., a specific pattern
on cars) and assigns a target label to samples with the semantic feature.
In the inference phase, the poisoned model misclassifies samples with
the semantic feature without any sample modification.

To enhance the robustness of the semantic backdoor attack, Wang
et al. [68] proposed an edge-case backdoor attack. This attack assumes
a powerful adversary who possesses public datasets. Additionally, the
adversary can compromise multiple clients without collusion. In an
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edge-case attack, the adversary first collects edge-case samples with the
target semantic feature from public datasets, which refers to samples
that are unlikely to appear in the training data of benign clients.
Subsequently, the adversary assigns a target label to these edge-case
samples. The adversary trains the poisoned local models based on
edge-case samples and local benign samples. Since other benign clients
struggle to learn the clean features of these edge-case samples, the back-
doors in poisoned models become difficult for defense mechanisms to
detect and remove. Additionally, beyond leveraging public datasets to
expand the poisoned dataset, some studies [118,119] utilize Generative
Adversarial Networks (GANs) to generate additional samples based on
local knowledge, thereby eliminating the adversary’s dependence on
external knowledge.

Previous studies [66,68] on backdoor triggers did not adequately
account for the dynamics of the global model throughout the training
process, leading to backdoors within the global model being neither
durable nor optimal. To address this limitation, Zhang et al. [95] pro-
posed an Adversarially Adaptive Backdoor Attack to Federated Learn-
ing (A3FL). The A3FL assumes a regular adversary who can compromise
multiple clients without collusion. Additionally, the A3FL assumes that
a defender can access the trigger and utilize it to adversarially train
the global model. The A3FL aims to optimize the trigger so that it can
survive in this global model. Specifically, in the process of optimizing
the trigger, the adversary adversarially trains the global model based
on the samples with the trigger to predict the movement of the future
global model. Meanwhile, the trigger is optimized to facilitate the
implantation of backdoors into both the original global model and the
adversarially trained global model. Finally, the adversary employs the
optimized trigger to poison local data and trains poisoned local models.

Discussion: The semantic backdoor attack [66] is relatively simple
and often serves as the foundation for other advanced attacks, such
as [68,90,91]. The edge-case backdoor attack enhances the effective-
ness of semantic backdoor attacks while achieving high efficiency.
However, this attack fails to achieve attack dynamicity and backdoor
durability. Compared to the edge-case backdoor attack, A3FL trades off
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the overhead associated with trigger optimization for superior practi-
cality and defense resilience. Additionally, none of them demonstrates
attack imperceptibility, as they are solely focused on data poisoning.

(2) Distributed-Trigger Data Poisoning:

Exploiting the distributed nature of HFL, Xie et al. [67] proposed the
first distributed HFLBA, referred to as a Distributed Backdoor Attack
(DBA). The DBA assumes a regular adversary who can compromise
multiple clients and conduct collusion attacks. For a DBA, the adversary
first designs a global trigger, specifying its location, size, and other
attributes. This global trigger is then decomposed into multiple dis-
tributed triggers, which are individually assigned to malicious clients.
After that, each malicious client uses its assigned distributed trigger
to poison its local dataset and train a poisoned local model. After the
models are aggregated, the global trigger is successfully implanted into
the global model. During the inference phase, any sample with the
global trigger is expected to activate the backdoor.

Although the DBA demonstrates the effectiveness of distributed
triggers, the model-independent nature of the triggers used in the DBA
limits its ability to achieve high attack success rates. To address this
limitation, Gong et al. [98] proposed an advanced DBA that generates
a customized distributed trigger for each malicious client. This attack
assumes an adversary similar to the ones in DBA. Specifically, the ad-
versary first determines the attributes of distributed triggers, including
their locations, shapes, and sizes, and assigns a trigger mask to each
malicious client. Then, each malicious client optimizes its distributed
trigger to maximally activate neurons associated with the target label,
thus obtaining a model-dependent and effective distributed trigger. The
subsequent steps of this attack, including data poisoning, local training,
and model aggregation, are identical to those in the DBA.

Discussion: The two studies discussed above demonstrate sound
attack performance and have been experimentally shown to bypass
several defenses, such as RFA [110] and FoolsGold [112]. Meanwhile,
the DBA exhibits high efficiency, while the advanced DBA achieves
moderate efficiency. However, neither of these two attacks achieves
attack imperceptibility, attack dynamicity, and backdoor durability,
which significantly undermines their robustness and applicability in
practical scenarios. Additionally, the significant bias between the model
updates provided by benign and malicious clients makes these at-
tacks vulnerable to advanced robust aggregation algorithms, such as
Multi-Krum [111] and Bulyan [120].

4.2.2. Model poisoning

Although data poisoning-based attacks can successfully implant
backdoors into the global model, most of them suffer from limita-
tions such as limited attack performance, poor robustness, and low
practicality. Consequently, researchers have introduced various model
poisoning attacks to address these shortcomings.

(1) In-Training Model Poisoning: The core goal of all existing
model poisoning attacks is to enhance attack performance. Beyond
this shared goal, these attacks can be broadly categorized into two
groups: those that prioritize improving robustness and those that focus
on increasing practicality.

Practicality Enhancement:

Zhang et al. [90] believed that the poor backdoor durability in
previous studies results from conflicts in key parameters of poisoned
and benign model updates, which may cause the backdoors to dis-
appear. To address this issue, they proposed Neurotoxin. This attack
assumes a regular adversary who compromises a single client. Specifi-
cally, the adversary first poisons the local training data, following the
edge-case [68] backdoor attack or the semantic [66] backdoor attack.
Subsequently, the adversary selects infrequently updated parameters
based on the historical gradient variations of the benign local model,
updating only these parameters during training on poisoned samples.

Compared to Neurotoxin [90], Dai et al. [91] took a step back
and argued that benign samples in the ground-truth classes of poi-
soned samples hinder the model from learning backdoors since they
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share similar features but have different labels. Based on this insight,
they proposed Chameleon. Chameleon assumes an adversary similar
to the one in Neurotoxin. Specifically, the adversary first poisons the
local training data following BadNets [38] or the semantic backdoor
attack [66]. Subsequently, the adversary splits the local model into an
encoder and a classifier. The encoder is trained employing supervised
contrastive learning [121] to manipulate the embedding relationships
among samples in different classes. After that, the embedding distance
between poisoned samples and benign samples in the ground-truth
classes of poisoned samples is increased, while the embedding distance
between poisoned samples and benign samples in the target class is
decreased. Finally, the parameters in the encoder are frozen, and the
classifier is further trained for the classification task.

Discussion: The studies discussed above achieve excellent backdoor
durability. Neurotoxin and Chameleon achieve moderate efficiency and
introduce only minimal modifications to the model training process,
allowing them to be well-compatible with other advanced attacks. Ad-
ditionally, these two attacks can bypass some simple defenses, such as
Norm Clipping [109], and Spectral Anomaly Detection [69]. However,
neither of these attacks achieves attack imperceptibility and attack
dynamicity, rendering them vulnerable to advanced FLBDs such as
FLAME [113] and SparseFed [122].

Robustness Enhancement:

Building upon the edge-case backdoor attack [68], Wang et al. [68]
proposed a Projected Gradient Descent (PGD) attack. This attack as-
sumes an adversary similar to the ones in the edge-case backdoor
attack. The PGD attack aims to bypass norm-based defenses by con-
straining the norm deviation between poisoned models and the global
model. Specifically, the adversary first employs the edge-case backdoor
attack to poison the local data. Subsequently, during the model training
process, the adversary periodically projects the parameters of the poi-
soned model onto a ball, which is centered around the global model
of the previous iteration and has a radius defined by the constraint
threshold.

Several studies [99-101] have attempted to achieve attack imper-
ceptibility by optimizing triggers. Fang et al. [100] proposed a novel
approach known as the Focused-Flip Backdoor Attack (F3BA). Specif-
ically, the adversary flips the signs of unimportant parameters in the
model and optimizes the trigger to maximize backdoor activation while
preventing excessive model updates. Then, the adversary employs an
optimized trigger to poison local data and retrains the model to main-
tain its normal performance. In addition, Nguyen et al. [101] proposed
an Irreversible Backdoor Attack (IBA). IBA designs a generative model
that produces specific subtle noise for each sample. This specific noise
serves as a trigger for each sample and is exploited by the adversary to
poison the selected sample. Furthermore, the adversary employs two
model poisoning techniques, similar to those in Neurotoxin [90] and
PGD attacks [68], to mitigate anomalies in the poisoned model updates
and enhance backdoor durability. Both F3BA and IBA assume a regular
adversary who can compromise multiple clients without collusion. In
contrast, Lyu et al. [99] proposed CerP, which assumes a regular
adversary who can compromise multiple clients and conduct collusion
attacks. CerP frames the backdoor attack as a joint optimization process
of three learning objectives. First, the trigger is optimized to maximize
the model’s accuracy on the backdoor task while constraining its mag-
nitude to avoid detection. Second, the difference between the poisoned
and benign model updates is minimized. Third, the high similarity
among poisoned model updates is suppressed by exploiting collusion
among malicious clients. Based on these three objectives, the adversary
trains poisoned models to execute the covert and colluded backdoor
attack.

To simultaneously circumvent various defenses, Li et al. [102]
proposed a backdoor attack framework called 3DFed, which integrates
multiple evasion defense strategies. 3DFed assumes a regular adversary
who can compromise multiple clients and conduct collusion attacks.
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In 3DFed, the adversary first poisons the local data by adding a pixel
pattern to the corners of images and trains poisoned models. Then,
the adversary modifies the parameters in the poisoned models with a
low update frequency to unique values. In the subsequent round, the
adversary infers which poisoned models were accepted by checking the
global model’s changes on those parameters. Based on the results of this
inference, the adversary dynamically adjusts three modules to optimize
the training of the poisoned model. The first module restricts the norm
deviations between the poisoned and benign model updates by modi-
fying the loss function. The second module aims to prevent excessive
concentration and high pairwise similarities of poisoned model updates
by adding adaptive noise to these updates. The third module introduces
decoy models to hide the real poisoned model within benign models.

Although 3DFed exhibits strong attack effectiveness and robustness,
its performance heavily relies on a sufficient number of malicious
clients. To address this limitation, Li et al. [103] proposed a DAta-fRee
bacKdoor attack in FEDerated learning (DarkFed). DarkFed assumes an
adversary similar to the ones in 3DFed. Following Cao et al. [123],
DarkFed generates a substantial number of fake clients and constructs
shadow datasets for these clients using public datasets or a Gaus-
sian distribution. The adversary then poisons the shadow datasets and
optimizes the loss function during model training to restrict the differ-
ences in magnitude, distribution, and directional consistency between
poisoned models and the global model.

Discussion: The studies discussed above employed various tech-
niques to restrict the differences between poisoned and benign model
updates and circumvent various defenses, resulting in exhibiting ex-
cellent attack robustness. Additionally, these attacks exhibit their ad-
vantages and disadvantages in terms of practicality and efficiency.
CerP, F3BA, and IBA have been experimentally shown to achieve
backdoor durability. But they fail to demonstrate attack dynamicity.
Conversely, 3DFed can dynamically adjust its attack strategy based
on the global model’s state, thereby exhibiting attack dynamicity.
However, the backdoor durability of 3DFed remains unexplored. Addi-
tionally, CerP, F3BA, IBA, and 3DFed exhibit low efficiency due to the
requirement of optimizing triggers and training auxiliary models. The
PGD attack exhibits moderate efficiency but fails to achieve backdoor
durability and attack dynamicity. Although DarkFed does not achieve
backdoor durability or attack dynamicity and exhibits low efficiency,
it addresses the limitation associated with relying on a large number
of malicious clients, resulting in superior attack performance in certain
challenging scenarios.

(2) Post-Training Model Poisoning:

Building upon the semantic backdoor attack, Bagdasaryan et al. [66]
proposed a model replacement attack. This attack assumes a powerful
adversary who possesses knowledge about the FL system, such as the
global learning rate and the number of clients participating in FL.
Additionally, the adversary can compromise multiple clients without
collusion. In this attack, the adversary first employs a semantic back-
door attack to poison local data and modifies the loss function to
constrain the difference between the poisoned and benign model up-
dates during the training process. After that, the adversary significantly
amplifies the parameters of the poisoned local models based on its prior
knowledge and uploads them to the server, attempting to increase their
impact on the global model.

Zhuang et al. [104] observed that a small subset of layers within
the model dominates the model vulnerabilities, naming these layers
Backdoor-Critical (BC) layers. Based on this observation, they proposed
a layer replacement attack. This attack can achieve high attack perfor-
mance by targeting only the BC layers, thus evading many defenses.
Specifically, this attack assumes a regular adversary who can compro-
mise multiple clients without collusion. First, the adversary trains a
benign model and a poisoned model respectively. Subsequently, the
adversary iteratively replaces one layer of the poisoned model with
the corresponding layer from the benign model, while monitoring the
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changes in attack success rate following each layer replacement. Then,
the layers are organized in descending order based on the changes
in attack success rate. Finally, the adversary progressively replaces
layers of the benign model with corresponding layers from the poisoned
model in the sorted sequence until the attack success rate surpasses a
predetermined threshold.

Discussion: The model replacement attack satisfies attack imper-
ceptibility but has poor defense resilience due to the amplification
of poisoned local model parameters. The layer replacement attack
achieves attack imperceptibility and can bypass most defenses, as only
a subset of layers in the local model is poisoned. Furthermore, both
approaches are not highly practical. The model replacement attack
exhibits moderate efficiency, whereas the efficiency of the layer re-
placement attack is low due to the requirement of training two models.
Additionally, the model replacement attack is only effective when the
global model is close to convergence, which significantly undermines
its flexibility.

4.3. Review on VFLBAs

In VFL, each client possesses a subset of samples’ features, while the
labels are held by the server, as described in Section 2.1. However, as
discussed in Section 2.4.1, existing FLBAs assume an adversary capable
of compromising one or more clients, but not the server. Consequently,
for VFLBA, the adversary cannot modify the labels and can only poi-
son target-class samples to conduct backdoor attacks. This raises the
question of how to identify which samples belong to the target class.
Therefore, compared with data poisoning attacks against HFL, data
poisoning attacks against VFL encounter an additional challenge: label
inference.

4.3.1. AggVFLBAs

In AggVFL, the clients’ local models can effectively extract informa-
tion from samples and generate informative embeddings. Building on
this insight, Liu et al. [89] proposed a gradient-replacement backdoor
attack. This attack assumes a powerful adversary who compromises a
client and has access to a target-class sample. Specifically, the adversary
randomly selects black squares as a trigger to randomly poison a subset
of local samples. Subsequently, the adversary replaces the gradients
of these samples, which are distributed by the server, with those of
the target-class sample. This approach helps to create a poisoned local
model that can generate target-class embeddings for poisoned samples.

Discussion: The gradient-replacement backdoor attack is straight-
forward and highly efficient. However, it lacks support for attack
imperceptibility or attack dynamicity, and its backdoor durability re-
mains unexplored. Additionally, this attack cannot be directly applied
to SplitVFL, limiting its broader applicability.

4.3.2. SplitVFLBAs

(1) Data Poisoning:

Literature [84,105] assumes a powerful adversary who can compro-
mise one client and possess a target-class sample. The adversary utilizes
this target-class sample to identify target-class samples within malicious
clients’ local data. Specifically, Bai et al. [84] conducted label inference
through embedding swapping. For a well-trained SplitVFL, the server
returns a small loss for each embedding uploaded by clients. However,
if an embedding is maliciously modified to that of a different class,
the server responds with a large gradient. Consequently, the adversary
can perform label inference by swapping embeddings and observing
the resulting gradients. Similarly, Xuan et al. [105] proposed a label
inference method based on gradient similarity. This approach relies on
the observation that samples belonging to the same class exhibit similar
gradients. After identifying the target-class samples within malicious
clients’ local data, the adversary proceeds to poison them. Bai et al. [84]
designed a stripe-like trigger to directly poison the embeddings of
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these target-class samples. Furthermore, they enhanced the attack per-
formance by employing learning rate adjustments and randomization
strategies. Following Gu et al. [38], Xuan et al. [105] randomly select
a white square as a trigger to poison target-class samples. To further
enhance this attack’s effectiveness, the adversary replaces some of the
target-class samples with samples from other classes, thereby disrupting
the model’s learning of the target-class samples.

Naseri et al. [106] proposed a data poisoning attack against
SplitVFL, named BadVFL. BadVFL assumes a powerful adversary who
processes an auxiliary dataset that shares the same feature distribution
and label space as the genuine training dataset. Additionally, the ad-
versary can compromise multiple clients and conduct collusion attacks.
To facilitate the attack, the adversary first trains a classification model
using the auxiliary dataset to infer the labels of malicious clients’
local samples. Subsequently, trigger generation is formulated as an
optimization problem. Solving this problem produces a trigger such
that the embedding of any sample with this trigger is similar to the
embedding of the target-class sample. Finally, the adversary uses this
trigger to poison the target-class samples within malicious clients.

Different from previous work conducting label inference,
He et al. [85] and Chen et al. [107] assume an adversary who can
compromise one client and possess some target-class samples, thereby
eliminating the requirement for label inference. In the work of He
et al. [85], trigger generation is formulated as an optimization prob-
lem, aiming to create a trigger embedding that closely resembles the
embeddings of target-class samples while remaining distinct from the
embeddings of non-target-class samples. Once the trigger is generated,
it is used to poison the embeddings of target-class samples. Chen
et al. [107] proposed a Target-Efficient Clean Backdoor (TECB) attack,
which consists of two phases: clean backdoor poisoning and targeted
gradient alignment. In the clean backdoor poisoning phase, the ad-
versary optimizes a trigger utilizing gradients from the server and
poisons the target-class samples in each round. In the targeted gradi-
ent alignment phase, the adversary randomly poisons some unknown
samples and replaces their gradients with the scaled gradients of clean
target-class samples, thereby further enhancing the attack performance.

Discussion: The five studies mentioned above demonstrated high
attack performance, showcasing the effectiveness of backdoor attacks
against SplitVFL. Meanwhile, experimental results show that these
attacks can bypass several defenses, such as BadVFL can circumvent
defenses based on differential privacy. The study by He et al. [85]
achieves attack imperceptibility by constraining the differences be-
tween the trigger embedding and the normal embeddings, whereas
other studies do not focus on attack imperceptibility. The attack pro-
posed by Chen et al. [107] achieves attack dynamicity, as its trigger
is dynamically optimized during the data poisoning process based on
gradients from the server. However, attack dynamicity is not focused in
other studies. Additionally, since these attacks are in their initial stage,
they do not account for backdoor durability. All five studies require
additional computations beyond data poisoning, resulting in moderate
efficiency.

(2) Model Poisoning:

Gu et al. [108] proposed a Latent Representations-based Backdoor
Attack (LR-BA). LR-BA assumes a powerful adversary who possesses an
auxiliary dataset that shares the same feature distribution and label
space as the genuine training dataset. Meanwhile, the adversary can
compromise only one client. LR-BA is a post-training attack, occurring
after the completion of the VFL protocol. Initially, the adversary uses
the malicious client’s local model to obtain the embeddings of the
auxiliary dataset. These embeddings are then used to train a classifier
capable of accurately predicting the class of any unknown embeddings.
Subsequently, the adversary optimizes a backdoored embedding target-
ing a predefined label using the trained classifier. Finally, the malicious
client poisons its local samples using a specified trigger and fine-
tunes its local model with the poisoned samples and the backdoored
embedding, thereby implanting a backdoor into the local model.
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Discussion: Experimental results show that LR-BA can effectively
withstand Norm Clipping and Gradient Compression [115]. However,
LR-BA does not achieve attack imperceptibility or attack dynamicity,
and its backdoor durability remains unexplored. Since LR-BA requires
data poisoning and model fine-tuning, its efficiency is low. Addition-
ally, Gu et al. [108] pointed out that the attack performance of LR-BA
on multi-classification tasks is unstable and its effectiveness heavily
relies on the performance of the classifier.

4.4. Review on backdoor-based watermarking methods in FL

We review existing studies on backdoor-based watermarking meth-
ods in FL based on the taxonomy proposed earlier. Notably, some
studies [65] utilize both backdoor-based and feature-based watermark-
ing techniques. We focus on the former, as the latter falls outside the
scope of this paper. For further details on watermarking, please refer
to [124].

4.4.1. Server-side watermarking methods

Server-side watermarking methods usually assume that the server
initiates FL training and is trusted. In some studies [65,125], the server
embeds a backdoor-based watermark into the global model to safeguard
its intellectual property rights. In other studies [126], the server incor-
porates a distinct watermark into the global model distributed to each
client, enabling the identification of client-specific models.

Tekgul et al. [125] proposed the first server-side backdoor-based
watermarking approach for FL, named WAFFLE. Specifically, the server
generates an image trigger set containing random patterns with a
noisy background and labels each pattern with a different class. After
each aggregation round, the server retrains the global model using
this trigger set, thereby embedding these triggers as a watermark
into the global model. In addition to protecting model ownership, Yu
et al. [126] proposed Decodable Unique Watermarking (DUW) to locate
the infringer of a leaked model. In this method, the server first pre-
trains an encoder to generate a unique trigger set for each client. Then,
this trigger set is embedded into a randomly chosen dataset, along
with client-wise unique keys. The backdoor watermark is embedded
into the model through training on this dataset. During verification,
the ownership of the model is verified, and the client of a leaked
model is traced based on the client-unique key. Additionally, Shao
et al. [65] proposed FedTracker, which combines a backdoor-based
global watermark with multi-bit parameter-based local watermarks. In
FedTracker, the backdoor-based global watermark is controlled by the
server side, while the local watermarks are controlled by the client
side. FedTracker addresses the issue of catastrophic forgetting of the
main task caused by retraining the model on the trigger set in WAFFLE.
Specifically, the server first generates a trigger set using the method
in WAFFLE. Then, the server employs continual learning to retrain the
global model on the trigger set, thereby reducing forgetting of the main
task.

Discussion: Server-side and client-side watermarking each have
advantages and disadvantages. For server-side watermarking, water-
mark conflicts are not an issue, because watermarks are embedded
into the global model solely by the server. Additionally, server-side
watermarks can be used to track the client of a leaked model, as
demonstrated by methods like DUW [126]. However, these methods
often require retraining the model on a trigger set independent of the
training data, which inevitably introduces side effects on the model’s
normal performance. FedTracker [65] has partially alleviated this issue.
Moreover, existing server-side watermarking methods are primarily
designed for image classification tasks and have not been extended to
other types of tasks. Taking NLP tasks as an example, constructing a
text-based trigger set without any knowledge of the training data poses
a significant challenge.
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4.4.2. Client-side watermarking methods

For client-side watermarking methods, each client participating in
FL training aims to implant its watermark into the global model as proof
of its ownership and contribution.

Liu et al. [127] argued that the server is not entirely trusted. There-
fore, they proposed a client-side watermarking method. In this method,
the client independently generates a noise-based trigger set and embeds
the backdoor-based watermark into the model during local training
using this trigger set. Building upon this, Yang et al. [128] suggest that
the trigger based on random noise could be easily forged by malicious
parties. To address this, they designed a non-ambiguous trigger set
based on a permutation-based secret key and noise-based patterns to
enhance the robustness of the watermark. Similarly, to further improve
robustness through the optimization of the trigger set, Nie et al. [129]
introduced a scheme called FedCRMW, which constructs trigger sets
for watermark embedding using client-specific identifiers and exclusive
logos. Additionally, FedIPR proposed by Li et al. [130] aims to mitigate
conflicts between watermarks across different clients and enhance the
watermark robustness. In FedIPR, clients independently embed both
feature-based and backdoor-based watermarks into their local models.
In the backdoor-based watermarking, adversarial samples are adopted
as triggers, which are generated from original data with the PGD
method.

Discussion: Due to the characteristics of FL, client-side water-
marking is compatible with most FL security strategies. Moreover,
the local knowledge of clients allows them to design robust trigger
sets to mitigate the side effects of backdoor-based watermarking on
the model, as exemplified by methods such as FedCRMW [129] and
FedIPR [130]. However, client-side watermarking faces such challenges
as watermark conflicts and difficulties in tracking the client of a leaked
model. Additionally, existing backdoor-based watermarking methods
solely focus on HFL, while their application in VFL or FTL has not been
explored. Given that clients’ local knowledge and training processes
vary across different FL scenarios, client-side watermarking in VFL and
FTL introduces a new set of challenges.

5. FLBD review

In this section, we first present a taxonomy of FLBDs, as illustrated
in Fig. 12. Then, based on the taxonomy and evaluation criteria pro-
posed in Section 3.2, we thoroughly review existing FLBDs and assess
their pros and cons.

5.1. Taxonomy of FLBDs

Based on the target system, FLBDs can be divided into HFLBDs
and VFLBDs. A detailed taxonomy of HFLBDs is provided as follows.
VFLBDs are not further classified due to the limited number of studies
focused on this topic.
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5.1.1. Taxonomy of HFLBDs

HFLBDs can be categorized into local training defenses, pre-aggre-
gation defenses, in-aggregation defenses, and post-aggregation defenses
based on the stage at which they operate.

(1) Local Training Defenses: Local training defenses occur during
the clients’ local training phase, i.e., Step @ in Fig. 3(a). These de-
fenses typically manipulate the local data or the local models’ training
processes of trusted clients to produce clean and robust local models,
ultimately facilitating the creation of clean global models.

(2) Pre-Aggregation Defenses: Pre-aggregation defenses occur after
local model updates are uploaded and before model updates are aggre-
gated., i.e., between Step ® and Step @ in Fig. 3(a). These defenses
usually modify or remove suspicious local model updates. Based on
the techniques employed, these defenses can be divided into clipping
and differential privacy-based defenses, pruning-based defenses, and
anomaly detection-based defenses.

Clipping and Differential Privacy-based Defenses: These de-
fenses encompass two components: constraining the norm of model
updates and adding noise to the constrained updates. This approach
modifies suspicious model updates to mitigate their impact on the
global model.

Pruning-based Defenses: Pruning-based defenses focus on detect-
ing and removing parameters in model updates that are closely asso-
ciated with backdoors. The pruning technique modifies local model
updates to hinder the implantation of backdoors.

Anomaly Detection-based Defenses: These defenses detect and
remove suspicious local model updates before aggregation, preventing
the implantation of backdoors into the global model.

(3) In-Aggregation Defenses: In-aggregation defenses occur during
aggregation of local model updates, i.e., Step @ in Fig. 3(a). These
defenses typically adjust the global model’s learning rate or the aggre-
gation strategy to mitigate the impact of potential backdoors. Based on
the different objects being adjusted, these defenses can be further di-
vided into dynamic learning rate-based defenses and dynamic weighted
aggregation-based defenses.

Dynamic Learning Rate-based Defenses: These defenses dynami-
cally adjust the learning rate distributed by the server in each round,
thereby hindering potential backdoor attacks.

Dynamic Weighted Aggregation-based Defenses: These defenses
typically assess the suspiciousness of each local model update and
assign different aggregation weights to them, mitigating the impact of
suspicious local model updates on the global model.

(4) Post-Aggregation Defenses: Post-aggregation defenses occur af-
ter the aggregation of local model updates and before the distribution
of the global model, i.e., between Step @ and Step @ in Fig. 3(a). These
defenses typically either directly modify the global model or discard the
suspicious global model.

5.2. Review on HFLBDs

We review the existing studies on HFLBDs according to the taxon-
omy proposed above. Table 3 summarizes and compares the reviewed
studies on HFLBDs. Fig. 13 briefly illustrates the characteristics of
different categories of HFLBDs.
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Table 3
Summary and comparison of HFLBDs.
Taxonomy Ref Defense Robustness Practicality Efficiency Application
Model
Attack Adaptive Secure Unrestricted
Resilience Attacks Aggregation Poisoned
Resilience Compatibility Model Rate
Local [88] P-® MR, DBA v v X Medium IC
Training
Clipping and [109] R MR X X v High IC
Differential
Privacy
Pruning [92] R MR, DBA, v X X High IC
Pre- Neur
Aggregation [69] P-@ MR ? X v Medium IC, NLP
[113] R MR, DBA, v X X Medium IC, NLP,
PGD, Edge NIDS
[94] R MR, DBA v X v Medium IC
[96] R MR, DBA, v X X Medium IC, NLP,
Anomaly Edge NIDS
Detection [131] R MR, Edge v X X Medium IC, NLP,
NIDS
[132] R EP v X X Medium NLP
[133] R MR, Edge v X X Medium IC
[134] R MR, DBA, ? X X Medium IC, NLP, PA
PGD, Edge
Dynamic [93] R DBA ? X X High IC
Learning Rate
In [112] R MR X X v Medium IC, NLP
Aaregation [86] P-@ MR v X v Medium IC
B8TeE Dynami [87] P-® MR, DBA, v X v Medium IC
ynamic
Weighted Neur ) 3
Aggregation [135] R MR, DBA, ? X v Medium IC
Edge, Neur
[136] R MR, DBA, v X v Medium IC
Edge, PGD
Post- [137] R MR, Edge ? v v Medium IC, PA
Aggregation [138] R MR v v X Low IC

v Satisfied; X: Unsatisfied; ‘?”: Not discussed; R: Regular; P: Powerful; @: Knowledge of trusted clients; @: An additional dataset; MR: Model Replacement [66]; DBA: Distributed
Backdoor Attacks [67]; Edge: Edge-case [68]; PGD: The Projected Gradient Descent attack [68]; Neur: Neurotoxin [90]; EP: Embedding Poisoning [139]; IC: Image Classification;
NLP: Natural Language Processing; PA: Predictive Analytics; NIDS: Network Intrusion Detection System.
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5.2.1. Local training defenses

Zhang et al. [88] proposed a Federated Learning Provable De-
fense framework (FLIP), which erases potential backdoors in the global
model by adversarially training local models of trusted clients. FLIP
assumes a powerful defender who has full knowledge of the server and
several trusted clients. During the local training phase, the defender
employs a trigger inversion technique [77] to generate a universal
trigger for each trusted client and adds this trigger to a random subset
of local samples without altering their labels. Subsequently, the trusted
clients train robust local models on the modified local data. These
robust local models can significantly reduce the impact of backdoors
introduced by poisoned models on the global model.

Discussion: Experimental results show that FLIP achieves adaptive
attack resilience and effectively defends against the model replacement
attack [66] and the DBA [67]. Additionally, it can be compatible
with secure aggregation. However, the FLIP requires restricting the
number of malicious clients to ensure a sufficient presence of trusted
clients. Training a universal trigger for each trusted client results in
moderate efficiency for FLIP. Additionally, the performance of FLIP is
heavily dependent on the constructed universal trigger, thus it may be
ineffective if an adversary employs a trigger that significantly deviates
from the universal trigger.

5.2.2. Pre-aggregation defenses

(1) Clipping and Differential Privacy-based Defenses:

To defend against FLBAs based on amplified poisoned model up-
dates [66], Sun et al. [109] proposed a simple but effective defense
mechanism. This defense assumes a regular defender. Before the server
aggregates local model updates, the defender clips the norms of these
updates within a predefined threshold. Subsequently, a small amount
of Gaussian noise is added to the clipped model updates based on
differential privacy techniques. This approach significantly weakens
and disrupts potential poisoned model updates.

Discussion: This defense remains effective regardless of the number
of malicious clients and can effectively counter the model replacement
attack [66]. Additionally, this defense exhibits high efficiency, leading
to it often being integrated as a defensive component within complex
defense frameworks [96,113,137]. However, this defense is ineffective
against adaptive attacks and is incompatible with secure aggregation.
Additionally, setting appropriate thresholds for norm clipping and noise
amount is challenging.

(2) Pruning-based Defenses:

Observing that key parameters updated in local models differ be-
tween malicious and benign clients, Huang et al. [92] proposed a
defense mechanism called Lockdown based on the pruning approach.
Lockdown assumes a regular defender. The defender prohibits all
clients from updating parameters that contribute less to the main task.
Specifically, the defender assigns each client a mask that designates
which model parameters can be updated. This mask is dynamically
adjusted based on the statistical frequency of parameter updates. Con-
sequently, Lockdown effectively prunes suspicious parameter updates
before aggregation, thereby preventing the introduction of backdoors
into the global model.

Discussion: Experimental results show that Lockdown can effec-
tively defend against various attacks, including the model replacement
attack [66], DBA [67] and Neurotoxin [90], and even adaptive attacks.
However, Lockdown is not compatible with secure aggregation. Mean-
while, the performance of Lockdown is significantly affected by the
number of malicious clients. Additionally, Lockdown modifies the train-
ing strategy of clients, which may introduce new privacy protection
concerns and new attack surfaces.

(3) Anomaly Detection-based Defenses:
Research on anomaly detection typically focuses on designing a
strategy to effectively separate poisoned and benign model updates.
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These defenses typically assume a regular defender, except the defense
presented in [69].

Li et al. [69] observed that poisoned and benign model updates are
represented very differently in low-dimensional latent space. Based on
this observation, they proposed an AutoEncoder-based defense mech-
anism. This defense assumes a powerful defender who knows a clean
public dataset. Specifically, the defender first trains a model multiple
times on the public dataset to get multiple benign model updates. After
that, these model updates are used to train an AutoEncoder [140],
in which the encoder encodes model updates into low-dimensional
embeddings and the decoder reconstructs the model updates from these
embeddings. Subsequently, the defender utilizes the AutoEncoder to
reconstruct the local model update of each client. If a reconstructed
model update is far away from its original one, this model update
should be poisoned.

Thienet et al. [113], Zhang et al. [94], Rieger et al. [96], Kumari
et al. [131] and Zhang et al. [132] explored the differences between
poisoned and benign model updates across various features. Their work
often involves calculating the differences between model updates across
the features they introduced and clustering model updates based on
these differences to detect and remove anomalous updates. Thienet
et al. [113] proposed a defense framework named FLAME, which de-
tects poisoned model updates by measuring angular deviation between
model updates. In addition, FLAME introduced adaptive clipping and
noising strategies, offering an improvement over the defense based on
clipping and differential privacy [109]. Zhang et al. [94] developed
FLDetector, a defense mechanism that leverages the consistency of
local model updates from a client. This mechanism first predicts each
client’s model updates using its local historical updates and then detects
poisoned updates by analyzing the differences between predicted and
actual model updates for each client. Rieger et al. [96] observed
that the presence of numerous mislabeled samples in malicious clients
causes significant differences in the parameters of benign and poisoned
local models, as well as in their prediction vectors for the same sam-
ples. Building upon these observations, Rieger et al. [96] proposed
DeepSight, which detects poisoned updates by calculating differences
between model parameters and differences between prediction vectors
of local models for randomly generated samples. Kumari et al. [131]
proposed a defense mechanism called BayBFed, which utilizes the
probability distribution of local model updates to detect anomalous
updates. Zhang et al. [132] observed that, for NLP tasks, the difference
in data divergence between poisoned and benign model updates is
more significant than their difference in distance. Consequently, they
introduced Fed-FA, a defense specifically designed for NLP tasks. This
approach employs F-divergence to calculate the differences between
each local model update and the global model update, and removes
those updates with large F-divergence values.

Previous studies have typically employed a single metric for detect-
ing anomalous model updates, limiting their effectiveness to specific
attacks. Krauet al. [133] and Huang et al. [134] proposed defense
mechanisms that integrate multiple detection metrics. Krauf3et al. [133]
introduced six metrics to measure the distance between local and
global model updates, as well as variations in model parameters. Huang
et al. [134] introduced three metrics to assess the distance between
local and global model updates. The primary difference between these
two approaches lies in how to use multiple metrics: the former detects
anomalous model updates using each metric individually, while the
latter consolidates the three metrics into a unified metric and detects
anomalous model updates based on the unified metric.

Discussion: Anomaly detection-based defenses are a crucial part
of HFLBDs and have demonstrated good performance across various
applications. Additionally, most of them [94,96,113,131-133] are able
to bypass adaptive attacks, significantly enhancing their robustness.
However, since these defenses typically involve processing and comput-
ing model updates, such defenses tend to exhibit moderate efficiency
and are incompatible with secure aggregation. Additionally, the studies
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by Li et al. [69] and Zhang et al. [94] rely on an additional dataset
and historical model updates from clients respectively, rather than on
statistics from clients, which allows their defenses to remain effective
regardless of the model poisoning rate. In contrast, although other
studies [96,113,131-134] do not depend on additional knowledge or
historical information, they typically require a poisoned model rate of
less than 50%.

5.2.3. In-aggregation defenses

(1) Dynamic Learning Rate-based Defenses:

Inspired by an insight that the updating direction of poisoned and
benign models differ in certain dimensions, Ozdayi et al. [93] proposed
a defense mechanism that dynamically adjusts the learning rate of
the model distributed by the server. This mechanism assumes a regu-
lar defender. Specifically, because the signs of benign model updates
exhibit high consistency in each dimension, the defender maintains
a normal learning rate in the dimensions where the signs of model
updates exhibit high consistency. Conversely, as the signs of poisoned
model updates typically differ from those of benign model updates, the
defender flips the signs of the learning rate in the dimensions where
there is a disagreement in signs of model updates. This strategy aims
to maximize the loss associated with backdoor learning.

Discussion: This defense mechanism is lightweight and achieves
high efficiency. Experimental results demonstrate that it effectively de-
fends against DBA [67]. However, the resilience of this defense against
adaptive attacks remains unexplored. Since it adjusts the learning rate
based on statistical methods, it becomes ineffective in the presence
of a large number of malicious clients. Additionally, this defense is
incompatible with secure aggregation.

(2) Dynamic Weighted Aggregation-based Defenses:

The research based on dynamic weighted aggregation seeks to
explore a scoring strategy for assessing the suspiciousness of model
updates. This strategy assigns different weights to model updates during
aggregation based on their respective scores, thereby mitigating the
impact of anomalous updates on the global model. These defenses
typically assume a regular defender, except the defenses presented
in [86] and [87].

Fung et al. [112] argued that poisoned model updates exhibit high
similarity, as malicious clients share the same backdoor task. Building
upon this idea, they proposed FoolsGold, which assigns the aggregation
weights of model updates based on the maximum cosine similarity
between updates. Model updates that are more similar to others are
assigned smaller weights. Yang et al. [135] proposed a defense mecha-
nism named RoseAgg. To defend against collusion attacks, RoseAgg first
aggregates multiple updates that exhibit high similarity into a single
update and then employs principal component analysis [141] to extract
a benign principal component from the model updates. Subsequently,
the aggregation weights of local model updates are assigned based
on their projection values onto the clean principal components. The
smaller the projection value, the smaller the weight of the local model
update. Cao et al. [86] considered that existing robust aggregation
algorithms [111,142] are ineffective when there are numerous mali-
cious clients, as they rely solely on local model updates. Therefore,
they proposed a defense mechanism based on a root of trust, named
FLTrust. FLTrust assumes a powerful defender who has an additional
small training dataset. FLTrust assigns the aggregation weight of each
local model update based on the difference between the local model
update and the benign model update (i.e., the trust root) trained on this
dataset. The greater the difference, the smaller the weight of the local
model update. Jia et al. [87] proposed a game-theory-based defense
mechanism named FedGame, which assigns the aggregation weights of
local model updates through a minimax game between an adversary
and a defender. FedGame assumes a powerful defender who has an
additional small training dataset, and an adversary who is aware of
the defender’s defense strategy. The adversary estimates the weights of
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the poisoned models adjusted by the defender using local knowledge
and optimizes the backdoor attack strategy to increase the weights of
these models. The defender first reverses engineering a trigger and a
target class based on the global model and uses them to poison the
training dataset. Then, the defender calculates the backdoor accuracy of
each local model on the poisoned dataset and adjusts the weights of the
local models based on this accuracy. The higher the backdoor accuracy,
the smaller the weight of the model. Additionally, Huang et al. [143]
introduced a method for evaluating client trustworthiness by analyzing
their behavioral information at the classification and feature layers.
This trust evaluation is used to assign different aggregation weights to
different clients, effectively suppressing the implantation of backdoors.

Unlike previous studies’ model training and aggregation processes,
Zhang et al. [136] decompose a complete model into an extractor and
a classifier, which are trained and aggregated independently. Building
on this, they introduce a backdoor defense framework called FLPu-
rifier, designed to disrupt the strong correlation between the trigger
features and the target label. During the local training phase, each
client first trains the extractor on label-removed samples via supervised
contrastive learning [144] and then retrains the entire model on la-
beled samples. In the aggregation phase, the server performs average
aggregation on the clients’ extractors and applies weighted aggregation
to the clients’ classifiers, as the extractors are clean. The server then
adjusts the aggregation weights based on the difference between each
local classifier and an average classifier representing the mean of all
classifiers. The larger the difference, the smaller the weight of the
classifier.

Discussion: The studies discussed above can achieve sound de-
fense performance regardless of the poisoned model rate. FLTrust [86],
FedGame [87], and FLPurifier [136] have been experimentally shown
to be effective against adaptive attacks, significantly enhancing their
robustness. However, FoolGolds is ineffective against such attacks and
the resilience of RoseAgg against adaptive attacks remains unexplored.
Additionally, these defenses require knowledge of each local model up-
date to adjust the aggregation weights, making them incompatible with
secure aggregation. Lastly, these studies achieve moderate efficiency, as
they require additional computations of the differences between model
updates.

5.2.4. Post-aggregation defenses

Xie et al. [137] proposed the first general framework for training
certifiably robust FL models against backdoor attacks, named Cer-
tifiably Robust Federated Learning (CRFL). CRFL assumes a regular
defender and operates during the training and inference phases. During
the training phase, the defender clips the norm of the aggregated global
model and adds noise to it. During the inference phase, the defender
smooths the global model with randomized parameter smoothing and
makes predictions based on the smoothed global model. CRFL utilizes
clipping and smoothing techniques on model parameters to regulate
the smoothness of the global model, thereby providing a sample-wise
robustness certification against backdoors with limited magnitude.

Andreina et al. [138] proposed a Backdoor detection via Feedback-
based Federated Learning (BaFFLe). BaFFLe assumes a regular de-
fender. BaFFLe introduces a validation phase after each round of ag-
gregation. During this phase, the server sends the current global model
and the previous global models to each client. After receiving these
global models, the clients calculate the differences in misclassification
rates between each pair of global models on local data. Based on
these differences, the clients justify whether the current global model
has been compromised and report results to the server. Based on the
feedback from the clients, the server determines whether to accept the
current global model by statistical methods.

Discussion: The studies discussed above occur after aggregation,
thus they are compatible with secure aggregation. CRFL [137] has been
demonstrated to be effective regardless of the poisoned model rate,
resulting in superior practicality. However, although CRFL provides a
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robustness certification against backdoors with limited magnitude, its
resilience to attacks using triggers exceeding the threshold and adaptive
attacks has yet to be investigated. Additionally, CRFL achieves moder-
ate efficiency due to the additional computations required during the
inference phase. BaFFLe [138] can defend against adaptive attacks but
requires a poisoned model rate of less than 50%. Additionally, BaFFLe
requires extra computation and communication during the validation
phase, resulting in low efficiency.

5.3. Review on VFLBDs

Currently, there is little research on VFLBDs. Most of them were
proposed in studies of VFLBAs to evaluate the robustness of the attacks.

Liu et al. [89] introduced three defense mechanisms to defend
against the gradient replacement attack that is an AggVFLBA. The first
defense adds additional training layers to the server’s model to prevent
the leakage of label information. The second defense employs differen-
tial privacy to mitigate the potential attack impact by introducing noise
into the gradients. The third defense is gradient compression, which
restricts the server to send only gradients with significant magnitudes
to the clients, thereby preventing the leakage of label information.

Zou et al. [117] also proposed a defense mechanism against the gra-
dient replacement attack [89]. The defense is based on a label disguise
technique, termed Confusional AutoEncoder (CAE). CAE consists of an
encoder and a decoder, where the encoder takes the true labels as input
and outputs fake labels, while the decoder takes fake labels as input
and restores the original true label. During the VFL training phase,
the active party uses the fake labels generated by the encoder and
collaborates with the passive party for training. In the VFL inference
phase, the active party transforms the predicted labels back using the
trained decoder. CAE can effectively prevent label information leakage
and defend against the gradient replacement attack by confusing the
true gradients and labels.

Bai et al. [84] and Naseri et al. [106] applied backdoor defenses in
centralized learning to the SplitVFL context, including Neural
Cleanse [77], Model Pruning [80], Adversarial Neuron Pruning [145],
Sample Preprocessing Defense [146], and Anti-Backdoor Learning [83].
Additionally, Bai et al. [84] developed an adaptive defense against
VILLAIN they proposed, which neutralizes the unknown trigger by con-
volutional operations. Naseri et al. [106] performed anomaly detection
over the feature embeddings of each class to detect backdoors. How-
ever, experimental results show that none of these defenses effectively
countered their proposed attack.

He et al. [85] designed two anomaly detection methods to evaluate
the robustness of their proposed attack. The first method is to filter
out local embeddings that exhibit anomalous in the distributions of
length and the element values. The second method is based on reverse
engineering. This method constructs reversed triggers for each class.
Then, it performs anomaly detection for the reversed triggers. If one or
more triggers deviate from the distribution of other reversed triggers,
the model should be infected.

Discussion: The defenses discussed above can be broadly catego-
rized into two types: those targeting intermediate computation results,
such as embeddings and gradients, and those focusing on the model
itself. However, these defenses demonstrate limited effectiveness in
countering existing VFLBAs, which may be attributed to the following
factors. First, in VFL, since both training and inference rely heavily
on intermediate computation results from parties, defenses targeting
these intermediate results often involve a trade-off between model per-
formance and defense effectiveness. Second, defenses focusing on the
model are typically adapted from those proposed for centralized learn-
ing. However, due to the split nature of models in VFL, the effective-
ness of these defenses may be significantly compromised. Additionally,
while CAE [117] is suitable for the VFL setting and avoids compromis-
ing intermediate results, its effectiveness is limited to defending against
the gradient replacement attack [89].
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6. Open issues and future research directions

In this section, according to the above literature review on FLBAs
and FLBDs, we respectively summarize open issues on these two lines of
studies. Subsequently, we propose potential future research directions
by analyzing the underlying causes of these issues.

6.1. FLBAs

6.1.1. Attack practicality

(1) Open Issues: Existing research has paid limited attention to the
practicality of attacks, such as the attack dynamicity and the backdoor
durability. Dynamic attacks aim to dynamically execute optimal attack
strategies based on the global model’s state, and attacks with durable
backdoors seek to maintain stable attack performance even after the
attack has ceased. Achieving both criteria in an attack typically results
in superior practicality. Given that most current studies achieve strong
attack performance, these two criteria related to attack practicality
become especially significant. However, among the studies reviewed,
only one [95] achieves both attack dynamicity and backdoor durability.
The reason these criteria are often overlooked may stem from the as-
sumption that the attack scenarios in existing research are generalized,
overlooking extreme attack conditions — such as the adversary having
a limited number of attack attempts and the server deploying various
dynamic defense mechanisms. Yet, such extreme attack scenarios are
still possible in real-world environments.

(2) Future Research Directions: As a result, developing FLBAs
with attack dynamicity and backdoor durability represents a signifi-
cant direction in future research. Regarding attack dynamicity, Future
research could utilize techniques such as reinforcement learning or
game theory to dynamically adjust attack strategies. Additionally, fu-
ture research could focus on developing techniques that infer potential
defense mechanisms based on dynamic changes in the global model.
This approach would enable malicious clients to strategically employ
attack strategies to effectively bypass these defenses. As for backdoor
durability, future work should explore the underlying factors affecting
backdoor durability and utilize these insights to guide the development
of effective and stable FLBAs. Moreover, in the context of FLBD, dy-
namic defenses and promoting backdoor unlearning could offer a novel
perspective for mitigating the impact of advanced attacks.

6.1.2. Efficiency and robustness

(1) Open Issues: The trade-off between efficiency and robustness
presents a significant challenge. A review of existing studies indi-
cates that highly robust attacks often suffer from low efficiency. This
is primarily because achieving strong robustness typically requires
considerable time and resource overhead, such as minimizing the dif-
ferences between poisoned and benign model updates across various
features [66,99,100] or integrating multiple defense evasion strate-
gies [102]. In contrast, some simple yet effective attacks [67,68] exhibit
high efficiency but may lack robustness. Currently, there is no flexible
strategy that balances efficiency and robustness.

(2) Future Research Directions: There is an urgent need to explore
strategies that can effectively balance efficiency and robustness. A
practical approach for balancing efficiency and robustness is to adopt
appropriate attack strategies according to the actual local environment.
Specifically, malicious clients with abundant computational resources
(e.g., large institutions or enterprises) are capable of launching robust
and complex backdoor attacks. Conversely, lightweight attacks are
mostly adopted by resource-constrained malicious clients. Furthermore,
collusion attacks present another viable strategy: when a large number
of malicious clients are compromised, their coordinated efforts can
significantly enhance both the efficiency and robustness of attacks.
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6.1.3. Attack imperceptibility

(1) Open Issues: Attack imperceptibility is often overlooked in
VFLBAs. To date, only one study [85] has achieved attack impercepti-
bility in VFLBAs. In VFL, backdoor attacks may cause malicious clients
to generate significantly anomalous intermediate representations due
to manipulated sample features or models. Without proper constrained,
these anomalies could lead to the detection of malicious clients, result-
ing in attack failure. Therefore, ensuring imperceptibility in VFLBAs is
of paramount importance.

(2) Future Research Directions: In VFL, the intermediate represen-
tations generated by clients evolve dynamically during training. There-
fore, imperceptible attacks can be achieved by dynamically constrain-
ing poisoned intermediate representations. For instance, an adversary
could restrict the norm of the poisoned representations to fall within
the median range of all benign intermediate representations, effec-
tively hiding them among benign ones. Furthermore, triggers could be
adaptively adjusted based on intermediate representations to enhance
both the effectiveness and imperceptibility of the attack. Additionally,
increasing the diversity of poisoned intermediate representations could
further improve attack imperceptibility.

6.1.4. Backdoor attacks on FTL

(1) Open Issues: There is a research gap regarding backdoor attacks
on FTL. In FTL, datasets from different participants have neither the
same sample IDs nor common feature spaces. Therefore, malicious
participants encounter significant challenges in obtaining sufficient
knowledge to execute backdoor attacks in FTL. Consequently, exploring
how to execute backdoor attacks in FTL represents a novel open issue.
Additionally, research on FLBAs across various applications, such as
natural language processing and speech recognition, remains limited.

(2) Future Research Directions: Investigating how to implement
backdoor attacks in FTL represents a novel research topic in the future.
Future studies could draw insights from attack strategies in HFL and
VFL, and explore their applications in FTL. Furthermore, researching
FLBAs for different applications is a beneficial direction for future stud-
ies. Researchers could leverage techniques used for backdoor attacks in
centralized learning for different applications to redesign approaches
suitable for FL.

6.2. FLBDs

6.2.1. Secure aggregation compatibility

(1) Open Issues: None of the existing pre-aggregation and in-
aggregation defense mechanisms are compatible with security aggre-
gation techniques. Secure aggregation enhances the privacy of FL sys-
tems by encrypting local model updates, effectively defending against
privacy threats such as member inference attacks [147] and model
inversion attacks [148]. However, current pre-aggregation and in-
aggregation defense mechanisms rely on statistical analysis or mod-
ification of local model updates in plaintext, which renders them
incompatible with secure aggregation.

(2) Future Research Directions: Given that both robustness and
privacy are crucial for FL systems, it is imperative to develop FLBDs
that are compatible with secure aggregation. One intuitive approach
to achieve this goal is to develop local training or post-aggregation
defense mechanisms that avoid analyzing or modifying local model up-
dates. Additionally, future research should focus on developing Privacy-
Preserving Federated Learning (PPFL) frameworks that are compatible
with FLBDs. For instance, Ma et al. [149] proposed a privacy-preserving
defense strategy called ShieldFL, which utilizes two-trapdoor homo-
morphic encryption to resist encrypted model poisoning without com-
promising privacy in PPFL.

19

Information Fusion 123 (2025) 103248

6.2.2. Restriction on the poisoned model rate

(1) Open Issues: Most existing HFLBDs are only effective at low
poisoned model rates, limiting their applicability in practical scenar-
ios. This limitation arises because these defense mechanisms rely on
statistical methods to identify poisoned model updates, rendering them
ineffective at high poisoned model rates.

(2) Future Research Directions: Developing defense mechanisms
that are independent of the poisoned model rate is a promising research
direction. Future research could focus on identifying poisoned model
updates by analyzing the historical model updates of each client,
thereby avoiding the requirement for statistical analyses of all model
updates. For example, the direction or magnitude of a client’s historical
model updates could be monitored. A model update that deviates signif-
icantly from historical updates in either direction or magnitude may be
indicative of an anomaly. Additionally, future research could focus on
eliminating potential backdoors in the global model by modifying the
global model itself, rather than concentrating on local model updates.
Defense mechanisms based on backdoor removal in centralized learn-
ing may provide valuable insights for this approach, such as Neural
Attention Distillation [81] and Anti-Backdoor Learning [83].

6.2.3. VFLBDs

(1) Open Issues: There is a lack of extensive research on backdoor
defense mechanisms specifically tailored for VFL. The existing VFLBDs
are neither universal nor effective, rendering them susceptible to the
current VFLBAs. Consequently, there is an urgent need for further
investigation to develop robust and practical backdoor defenses specif-
ically tailored for VFL. Additionally, due to differing defense strategies
employed by VFLBDs and HFLBDs, the evaluation criteria for VFLBDs
require further development.

(2) Future Research Directions: Research on VFLBDs is becom-
ing an urgent topic. Previous studies have adapted backdoor defense
mechanisms from centralized learning and HFL to VFL. However, their
defense performance remains significantly limited. Therefore, there is a
critical need for effective defense mechanisms specifically tailored for
VFL. For instance, VFLBDs could employ anomaly detection techniques
to detect and remove poisoned embeddings. Furthermore, future re-
search could explore the application of backdoor defense strategies on
HFLBDs in VFL, including robust aggregation, pruning, and certified
robustness.

6.2.4. Attack resilience

(1) Open Issues: Existing research on FLBDs primarily focuses on
defending against fixed-trigger and static backdoor attacks [66-68,68],
while neglecting the evaluation of defense performance against trigger-
optimization attacks [99-101] and dynamic backdoor attacks [95,102].
In addition, the adaptive attacks assumed in existing FLBDs do not
encompass trigger-optimization attacks and dynamic attacks. These
advanced attacks exhibit strong effectiveness and robustness and have
been widely proposed in recent years. The resilience of FLBDs to
existing advanced attacks requires further investigation.

(2) Future Research Directions: Future studies should focus on
effectively countering advanced attacks such as trigger-optimization
attacks and dynamic backdoor attacks. Future research could draw
insights from these attacks to inform the design of resilient defense
mechanisms. For instance, a prerequisite for an adversary to launch
a dynamic backdoor attack is having full knowledge of the global
model’s dynamic changes. Therefore, a possible defense strategy is to
restrict the client’s access to non-essential parameters of the global
model during training, thereby preventing the adversary from obtaining
critical dynamic information.
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6.2.5. Defense mechanisms for practical applications

(1) Open Issues: Although existing FLBDs have demonstrated ef-
fectiveness against FLBAs, their deployment in practical applications
remains uncertain. Practical FL applications, e.g., in wireless commu-
nications and social networks, are vulnerable to a wide range of attacks,
such as adversarial examples [150,151], poisoning attacks [152,153],
and privacy attacks [154,155]. In such scenarios, the defender faces
significant challenges, as specific attack strategies are often unknown in
advance, and deploying tailored defense mechanisms for every possible
attack is impossible due to resource constraints. Consequently, there is
an urgent need to deploy general and effective defense mechanisms.

(2) Future Research Directions: Trust evaluation, which quanti-
fies the trustworthiness of an entity by considering trust influencing
factors [156,157], may provide a general security solution for practical
FL applications. Currently, a wide variety of trust evaluation algorithms
have been proposed, demonstrating the ability to accurately assess the
trustworthiness of clients in FL systems [158]. By leveraging these
algorithms, clients with low trustworthiness can be identified and
excluded, thereby mitigating potential security threats. Furthermore,
the performance of trust evaluation algorithms in defending against
specific attacks can be enhanced by incorporating additional factors
that influence trustworthiness. For instance, the direction of model
updates provided by clients is a critical factor in detecting backdoor
attacks. Integrating this factor into trust evaluation algorithms can
significantly improve their effectiveness in defending against backdoor
attacks. Therefore, future research could focus on identifying key fac-
tors for detecting attacks and integrating them into trust evaluation
algorithms to develop general and effective defense solutions for prac-
tical FL applications. Trust evaluation on the local models produced by
the clients can also help in generating the global model in a trustworthy
way.

7. Conclusion

In this paper, we conducted a comprehensive survey on current
FLBAs and FLBDs. First, we introduced the basic knowledge related to
FL, backdoor attacks, and defense mechanisms, as well as the threat and
defense models for FLBAs and FLBDs, respectively. Then, we proposed
two sets of evaluation criteria to evaluate the performance of FLBAs and
FLBDs, respectively. Subsequently, we proposed taxonomies of FLBAs
and FLBDs from different perspectives, respectively. By employing
our proposed criteria and taxonomies, we thoroughly reviewed exist-
ing studies. Additionally, we discussed backdoor-based watermarking
methods in FL. Finally, according to the review, we delved into several
open issues and further indicated future research directions to promote
the development of trustworthy FL.
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