
1

Online Self-Supervised Deep Learning for Intrusion
Detection Systems

Mert Nakıp and Erol Gelenbe Fellow, IEEE

Abstract—This paper proposes a novel Self-Supervised Intru-
sion Detection (SSID) framework, which enables a fully online
Deep Learning (DL) based Intrusion Detection System (IDS)
that requires no human intervention or prior off-line learning.
The proposed framework analyzes and labels incoming traffic
packets based only on the decisions of the IDS itself using
an Auto-Associative Deep Random Neural Network, and on an
online estimate of its statistically measured trustworthiness. The
SSID framework enables IDS to adapt rapidly to time-varying
characteristics of the network traffic, and eliminates the need
for offline data collection. This approach avoids human errors in
data labeling, and human labor and computational costs of model
training and data collection. The approach is experimentally
evaluated on public datasets and compared with well-known
machine learning and deep learning models, showing that this
SSID framework is very useful and advantageous as an accurate
and online learning DL-based IDS for IoT systems.

Index Terms—Self-Supervised Learning, Intrusion Detection,
Deep Learning, Internet of Things, Random Neural Network
(RNN), Auto-Associative Deep RNN, Botnet Attacks

I. INTRODUCTION

Botnet attacks can lead to thousands of infected devices
[1] compromising the devices of victims and turning them
into “bots” via malware [2], which in turn cause Distributed
Denial-of-Service (DDoS) attacks. The malicious bots, i.e.
compromised devices, can generate fraud information, cause
data leaks, and spread malware. It is reported that 27.7% of
all global website traffic in 2021 was generated by bots with
malicious intent, and is growing with a 7.3% increase reported
between 2018 and 2021 [3].

Botnet attacks severely challenge resource-constrained de-
vices and Internet of Things (IoT) networks [4], as an at-
tack propagates over the victim network increasing network
congestion, power consumption, and processor and memory
usage of IoT devices over time. Therefore, it is crucial to

This research has been supported in part by the European Commission
H2020 Program through the IoTAC Research and Innovation Action under
Grant Agreement No. 952684 and by the European Commission Horizon
Europe – the Framework Programme for Research and Innovation (2021-
2027) DOSS Project under Grant Agreement No: 101120270.

M. Nakıp and E. Gelenbe are with Institute of Theoretical and Applied
Informatics, Polish Academy of Sciences (PAN), Gliwice, Poland (e-mails:
mnakip@iitis.pl, and seg@iitis.pl)

E. Gelenbe is also with Lab. I3S, Université Côte d’Azur, Nice, France,
and Yaşar University, Izmir, Turkey

This preprint is accepted for publication at IEEE Transactions on Infor-
mation Forensics and Security, DOI: 10.1109/TIFS.2024.3402148. © 2024
IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

detect malicious network traffic and identify compromised
IoT devices during an ongoing Botnet attack. While detecting
malicious traffic allows reactive actions to alleviate the effects
of the attack and stop it, identifying compromised IoT devices
paves the way for preventive actions against the spread of
malware and Botnet attack.

On the other hand, as the majority (approximately 52%)
of IoT connections are to low cost and low maintenance
devices deployed in massive IoT networks [5], developing
and implementing complex and advanced security methods is
challenging as well. To this end, early research [6] developed
various types of lightweight Machine Learning (ML)-based
Intrusion Detection Systems (IDS) –especially anomaly de-
tecting IDS (anomaly-based IDS)– for IoT networks, showing
that anomaly-based IDS is very promising in detecting zero-
day attacks based on unknown intrusions that often target
vulnerable devices and networks.

Since the decisions of anomaly-based IDS are highly de-
pendent on the characteristics of the normal traffic used
for parameter optimization (i.e. learning), accurate decisions
become more difficult when the normal behaviour of network
traffic changes over time due to both internal and external
influences. For example, new device(s) may be added to the
IoT network causing a considerable change in aggregated
normal network traffic and an increased false positive alarms.

Therefore, anomaly-based IDS could greatly benefit from
the ability to adapt in real time to time-varying characteristics
of network traffic, ideally through sequential online learning
[7], [8]. However, the effectiveness of completely online
learning, even for lightweight ML-based IDS, is often limited
by two main factors: 1) A sufficient amount of collected
and labeled traffic data is not always accessible for every
system intended to be secured by the IDS. 2) Online parameter
updates are occasionally performed in parallel with intrusion
detection at fixed or variable time intervals. Frequent online
updates, i.e. short time intervals, result in high computational
resource consumption for only minor or no performance gain
per update. In contrast, infrequent updates, i.e. long time
intervals, may have difficulty adapting to changes in normal
traffic, resulting in poor IDS performance. Hence, each time
interval needs to be carefully selected, taking into account the
current state of the IDS and the actual behaviour of normal
network traffic.

In this paper, in order to enable completely online learning
of IDS parameters, a novel fully online Self-Supervised In-
trusion Detection (SSID) framework is proposed. SSID learns
from arriving traffic packets, measures the trustworthiness of
the IDS, including its generalization ability and accuracy on

ar
X

iv
:2

30
6.

13
03

0v
2

 [
cs

.C
R

]
 1

5
M

ay
 2

02
4

2

traffic packets it uses for learning. It can then decide when to
update the neural weights via its learning algorithm, keeping
itself up-to-date with a high intrusion detection accuracy.

The SSID framework can be used with any anomaly-
based IDS that requires parameter optimization, providing
fully online self-supervised learning of parameters in parallel
with real-time detection requiring no human intervention.
It also eliminates the need for labeled or unlabeled offline
data collection, and offline training or parameter optimization.
Therefore, the proposed framework contrasts sharply with
much of existing work [9]–[16] that has implemented self-
supervised learning for intrusion detection, often utilizing
offline (small-sized) labeled or unlabeled training data and
pseudo-labeling. Accordingly, as its main advantages, the
SSID framework

• Enables IDS to easily adapt time varying characteristics
of the network traffic,

• Eliminates the need for offline data collection,
• Prevents human errors in data labeling (online or offline),

and
• Avoids human labor and computational costs for model

training and data collection through prior experiments.

We also implement our SSID framework for a Deep Ran-
dom Neural Network (DRNN)-based IDS that analyzes high-
level network traffic metrics extracted from packet header
information and learns those metrics calculated for only
normal benign traffic. We evaluate the performance of the
SSID framework for two tasks, malicious traffic detection and
compromised device identification on Kitsune [17] and Bot-
IoT [18] datasets. The results revealed that IDS trained under
the SSID framework achieve considerably high performance
compared to the same IDS with offline and quasi-online (incre-
mental and sequential) learning. Meanwhile, the IDS trained
under SSID requires no offline dataset, external parameter
optimization or human intervention.

The remainder of this paper is organized as follows:
Section II reviews the related work on intrusion detection.
Section III presents the overview of the IDS used in this
work as well as the detection and learning processes. Sec-
tion IV proposes the novel SSID framework and present the
methodology enabling the self-supervised learning for IDS.
Section V evaluates the SSID framework for malicious traffic
detection and compromised device identification on public
datasets, and compares its performance against the state-of-
the art methods. Finally, Section VI summarizes this paper
and provides some insights for the future work. Note that
the definitions of abbreviations and the symbols appear in
this paper are respectively listed in Table III and Table IV
in Appendix.

II. RELATED WORK

We now briefly review recent related work on intrusion de-
tection in three categories of the work that: 1) detect malicious
traffic during Botnet-based DDoS (in short Botnet) attacks, 2)
identifies compromised network nodes, and 3) performs self-
supervised learning for intrusion detection.

A. DDoS Botnet Attack Detection

In [19], Tuan et al. conducted a comparative study for
performance evaluation of ML methods aiming to classify
Botnet attack traffic. In this work, the authors evaluated
the performances of Support Vector Machine (SVM), MLP,
Decision Tree (DT), Naive Bayes (NB), and unsupervised
ML methods (such as K-means clustering) on two datasets
(including KDD’99) revealing that unsupervised ML methods
achieve the best performance with 98% accuracy. In [20], Shao
et al. created an ensemble of Hoeffding Tree and Random
Forest (RF) models with online learning using both normal and
attack traffic. In [21], Shafiq et al. developed a feature selection
technique as a preprocessing algorithm for an ML-based botnet
attack detector. This algorithm ranks features according to their
Pearson correlation coefficients and greedily maximizes the
detector’s performance with respect to area under Receiver
Operating Characteristic (ROC) curve in the Bot-IoT dataset.
In [22], Doshi et al. developed an attack detection algorithm
comprised of feature extraction from the network traffic and
ML classifier. In the place of the ML classifier, the authors
used each of K-Nearest Neighbour (KNN), SVM, DT, and
MLP methods; then, they evaluated the performance of this
algorithm on a dataset collected within the same work. Letteri
et al. [23] developed an MLP based Mirai Botnet detector
specialized for Software Defined Networks. The authors fed 5
metrics, including the used communication protocol, to MLP.

In [24], Banerjee and Samantaray performed experimental
work to deploy a network of honeypots that attracts botnet
attacks and to detect those attacks via ML methods, such
as DT, NB, Gradient Boosting, and RF. In reference [25],
McDermott et al. developed the Bidirectional LSTM-based
method which is developed for packet-level botnet attack
detection by performing text recognition on multiple features
including source and destination IP addresses of a packet. In
addition, Tzagkarakis et al. [26] developed a sparse represen-
tation framework with parameter tuning using only normal
traffic for botnet attack detection.

Meidan et al. [27] developed an ML-based attack detection
technique which is trained using only normal traffic and tested
for Mirai and Bashlite botnet attacks on an IoT network with
nine devices. The authors also published the data collected
in this study under the name N-BaIoT dataset. In order to
detect Botnet attack in N-BaIoT dataset, Htwe et al. [28] used
Classification and Regression Trees with feature selection, and
Sriram et al. [29] performed a comparative study using 7
different ML methods (including NB, KNN, and SVM). In
Reference [30], Soe et al. developed a Botnet attack detection
algorithm comprised of two sequential phases first to train
utilized ML method and perform feature selection, then to
perform attack detection. The authors used MLP and NB
within this architecture, and they evaluated the performance
on N-BaIoT dataset. In [31], Parra et al. developed a cloud
based attack detection method using Convolutional Neural
Network (CNN) for phishing and using Long-Short Term
Memory (LSTM) for Botnet attacks. The authors evaluated
the performance of this method also on the N-BaIoT dataset
achieving 94.8% accuracy. CNN was also used by Liu et al.

3

TABLE I
KEY FEATURES OF RELATED WORKS ON SELF-SUPERVISED LEARNING FOR INTRUSION DETECTION

Reference IDS Labeled
Data

Data
Generator

Learning
Approach

Song and Kim [9] Reduced Inception
ResNet

Normal Traffic
+

Generated Noised Pseudo
Normal Data

LSTM Offline

Wang et al. [10]
BYOL Encoder

+
Linear Classifier

Malicious and Normal
Traffic BYOL Offline

(Transfer Learning)

Zhang et al. [11] Deep Adversarial Anomaly
Detection (DAAD)

Normal Traffic
+

Generated Feature Latents
GAN Offline

Kye et al. [12] AE-based Hierarchical
Anomaly Detection Only Normal Traffic No Generator Offline

Caville et al. [13] GNN None GraphSAGE Offline
Wang et al. [14] AE-based Intrusion Score None Contextual Masking Offline

Abououf et al. [15] LSTM-AE Only Normal Traffic Auto
Encoder-Decoder Offline

Meyer et al. [16] AE Neural Network
Reduced Data of

Malicious and Normal
Traffic

No Generator Offline
(Federated Learning)

SSID Framework AADRNN None No Generator Online

[32] with features that are processed by the triangle area maps
based multivariate correlation analysis algorithm. In recent
work [33], Bovenzi et al. employed DL models, specifically
using Auto Encoders (AEs) and KitNET, for unsupervised
early anomaly detection in IoT datasets, namely IoT-23 [34]
and Kitsune [17]. The results of [33] demonstrated the po-
tential for early anomaly detection in IoT network attacks by
evaluating the detection effectiveness of varying numbers of
packets, finding the first four packets to be the most effective.

B. Compromised Device Identification

Some recent work [35]–[40] focused on detecting com-
promised IoT devices during Botnet attacks, while Kumar
et al. [35] detected Mirai-like bots scanning the destination
port numbers in packet headers using an optimization-based
technique for subsets of all IoT packets. Chatterjee et al.
[36] identified malicious devices in IoT networks via evidence
theory-based analysis. To this end, they analyzed traffic flows
and selected the rarest features from a large number of commu-
nication features, including number of connections, transport
layer protocol, and source/destination ports. In [41], in order to
detect IoT botnet in an Industrial IoT network, Nguyen et al.
developed a dynamic analysis technique utilizing various ML
models, such as SVM, DT, and KNN, based on the features
generated from the executable files. In Reference [42], Hristov
and Trifonov developed a compromised device identification
algorithm using wavelet transformation and Haar filter on
the metrics indicating the processor, memory and network
interface card usage of an IoT device. In [40], Prokofiev
et al. used Logistic Regression to determine if the source
device is a bot based on 10 metrics regarding the traffic
packets. The performance of logistic regression is tested for a
botnet that spreads through brute-force attacks. Nguyen et al.
[37] detected compromised devices by an anomaly detection
technique combining federated learning with language analysis
for individual device types identified prior to detection. In

order to evaluate the performance of this technique, the authors
collected a dataset by installing 33 IoT devices, 5 of which
were malicious, and showed that detection performance is
around 94% for positive and 99% for negative samples.

More differently, in Reference [38], Abhishek et al. de-
tected not compromised devices but compromised gateways
monitoring the downlink channels in an IoT network and
performing binary hypothesis test. In [43], Trajanovski and
Zhang developed a framework consisting of honeypots to
identify the indicators of compromised devices and botnet
attacks. Bahşi et al. in [44] addressed the scalability issues for
ML-based Bot detection algorithms by minimizing the number
of inputs of ML model via feature selection. In [39], for mobile
IoT devices, Taneja proposed to detect compromised devices
taking into account their location, such that if a location
change or current location of an IoT device is classified as
unusual behavior, the device is considered compromised.

C. Self-Supervised Learning for Intrusion Detection

Song and Kim [9] developed self-supervised learning al-
gorithm for anomaly-based IDS in in-vehicle networks. In
this algorithm, Reduced Inception-ResNet is used to make
binary classification and detect unknown (zero-day) attacks.
The training of this anomaly-based IDS offline uses both
normal traffic and noised pseudo data generated using LSTM.
Wang et al. [10] applied and adapted Bootstrap Your Own
Latent (BYOL) self-supervised learning approach, which has
been proposed in [45], for intrusion detection. The parameters
of the BYOL algorithm are learned, then updated via transfer
learning, using a dataset containing both normal and malicious
traffic samples. For anomaly detection, Zhang et al. [11]
developed deep adversarial training architecture by extending
the well-known bidirectional Generative Adversarial Network
(GAN) model. This architecture jointly learns from normal
data and generated latent features. Kye et al. [12] introduced
a hierarchical network IDS based on the Auto Encoder (AE).

4

By leveraging self-supervised signals and specialized anomaly
scores within its AE architecture, this IDS learns offline only
from normal traffic data and does not need an additional
data generator. Caville et al. [13] developed a Graph Neural
Network (GNN) based network-level IDS. This IDS was
trained with a self-supervised learning approach using both
positive and negative samples for offline training with an
encoder graph created using an extended version of the well-
known GraphSAGE framework. Wang et al. [14] developed an
IDS with unsupervised learning combined with transformer
based self-supervised masked context reconstruction, which
improves the learning by magnifying the abnormal intrusion
behaviours. Abououf et al. [15] developed a lightweight IDS
architecture based on LSTM Auto Encoder (LSTM-AE) to
perform detection on IoT nodes. This model is trained offline
and unsupervised in an encoder-decoder architecture using a
pre-collected dataset in the cloud. Meyer et al. [16] developed
a federated self-supervised learning IDS. This IDS employ
auto-encoder based self-supervised model on local datasets
using federated approach. Note that the key features of the
related works on self-supervised learning, as well as the
proposed SSID framework, are summarized in Table I.

In this paper, we introduce a pioneering learning framework
termed SSID, tailored for Deep Learning (DL)-based intrusion
detection. Unlike conventional approaches prevalent in the ML
/ DL literature, SSID distinguishes itself in several key aspects:

• SSID eliminates dependency on additional generative
models. Unlike common practice in self-supervised learn-
ing, which often necessitates the incorporation of an extra
generative model (or contrastive method) for training
purposes [46], our SSID framework operates without this
requirement.

• SSID is independent of offline training data. While many
methods in the literature rely on the availability of pre-
collected (unlabeled) offline training data [47], SSID is
designed to function autonomously, even in scenarios
where such data is not readily accessible. However, if
available, SSID can leverage offline data to enhance its
performance.

• SSID facilitates fully online learning on independent net-
work nodes. A distinctive feature of SSID is its ability to
facilitate continuous online learning and enable real-time
intrusion detection across independent network nodes.

III. INTRUSION DETECTION SYSTEM USED IN SSID
The SSID framework does not consider a specific algorithm

for IDS or have strict requirements for it, except that it is based
on ML / DL or some other function with learnable parameters
and has a certain range of inputs and outputs. In addition,
the SSID framework can also be used with both anomaly and
signature based detection algorithms. On the other hand, as
real-time network traffic contains only normal “benign” traffic
until an attack occurs, an IDS structure that can learn only
from normal traffic may provide higher performance under
self-supervised learning. Therefore, anomaly-based algorithms
are the main focus in this paper.

We first present the structure of anomaly-based IDS that we
used within the SSID framework. This particular IDS structure

is displayed in Figure 1, which is mainly comprised of an DL
model and a decision maker component.

Deep Learning based
Auto-Associative

Memory

Decision
Maker

Observed metrics
for the actual

traffic

}

Expected metrics
for benign traffic

}
Probability of

intrusion

}with learnable parameters
(i.e. weights and biases)

Fig. 1. Particular structure of IDS used within the SSID framework during
performance evaluation

In the IDS structure shown in Figure 1, the DL model
is used to create an Auto-Associative Memory (AAM) that
reconstructs benign traffic metrics –which are the expected
metrics according to the norm of the actual traffic learned by
the AAM– from observed metrics. The significant difference
between the reconstructed (expected) metrics and the actual
metrics, as measured by the decision maker component, may
be indicative of malicious traffic.

The input of this IDS is the vector of M network traffic
metrics, xi = [xm

i , . . . , xm
i , . . . , xM

i], and the output, yi is a
decision indicating the probability of intrusion corresponding
to current traffic. The vector of expected metrics, which is
the output of DL-based AAM, for packet i is denoted by
x̂i = [x̂1

i , . . . , x̂
m
i , . . . , x̂M

i]. The DL-based AAM is a learned
function that maps the noisy or disordered metrics to the
normal metrics, i.e. faam : xi 7→ faam(xi) for faam(xi) = x̂i,
so that faam : [0, 1]M → [0, 1]M .

A. Deep Random Neural Network as Auto-Associative Mem-
ory

In the particular implementation of the IDS shown in
Figure 1, in place of the DL algorithm, we use the DRNN
model [48], [49]. DRNN is an extension of the RNN [50],
[51] with dense feedback loops between clustered neuronal
somas, and an overall feed-forward structure between layers
of dense clusters. After it is trained to create an AAM, we
call it Auto-Associative DRNN (AADRNN). Earlier research
has shown that an AADRNN-based IDS has a lightweight
architecture and offers high accuracy when used with unsuper-
vised auto-associative training with normal (benign) traffic [7],
[8], [52]–[55]. The AADRNN-based IDS was also evaluated
with offline [54], incremental [7] and sequential [8] learning
to detect malicious traffic and compromised devices during
Botnet attacks. G-Networks [56], which generalize the RNN,
and the simple RNN itself were also used with offline learning
to detect zero-day [55] and SYN DoS [57] attacks. In contrast,
in this paper, we use the AADRNN-based IDS as a specific
IDS within the novel SSID framework proposed for the first
time in this paper. The parameters of the AADRNN-based IDS
are now learned online thanks to the SSID framework learning

5

approach that is completely online and does not require labeled
data. It should be noted that the main contribution of this paper
is the development of self-supervised approach and the novel
SSID framework. In addition, AADRNN-based IDS can be
replaced with another ML or DL based IDS, e.g. MLP will
also be evaluated within the SSID framework in Section V.

In the AADRNN-based IDS, we use a DRNN model
consists of H layers and a rectangular structure with equal
units at each layer. Accordingly, we set H = M , each hidden
layer h ∈ {1, . . . ,H − 1} contains M neural clusters, and the
output layer is comprised of M linear neurons.

B. Intrusion Detection Process

Recall that this paper considers two main tasks: detecting
malicious traffic packets and identifying compromised network
nodes. As the results of earlier research [8], [54] showed,
each task requires a customized IDS to provide high accuracy.
Therefore, in the remainder of this subsection, we present the
traffic metrics and the decision maker component for each task
separately.

1) Traffic Metrics: We use the traffic metrics that are
defined in our earlier research specifically for Botnet attack
detection in [54] and compromised device identification in
[8]. These metrics are relatively few in number and are
calculated based solely on packet header information. There-
fore, they remain anonymous regarding packet content and
communicating devices, do not need for any sensitive or
device-specific information, thus preventing IDS from making
biased decisions, and are suitable for real-time operation on
lightweight systems. Meanwhile, they have been shown to be
effective in capturing signatures of Botnet attacks.

For malicious traffic detection, in order to capture the
signatures of Botnet attacks (especially Mirai), as the inputs
of AAM, we use M = 3 normalized metrics that measure the
total size and average inter-transmission times of the last 500
packets and the number of packets in the last 100 seconds.

For compromised device identification, we use M = 6
normalized traffic metrics which are calculated over time
windows of length 10 seconds. These metrics measure the
average size and average number of packets received from
a single source, the maximum size and maximum number of
packets received from any single source, and the total size and
total number of packets transmitted during a time window.

2) Estimation of the Expected Benign Traffic Metrics: The
expected benign traffic metrics is estimated (i.e. reconstructed)
based on the traffic metrics given as the inputs of AADRNN.
The estimated traffic metrics (x̂i) are then fed into the decision
maker component.

Let Wh denote the [(M + 1) ×M] matrix of connection
weights (including biases) between the layer h−1 and layer h
for h ∈ {1, . . . ,H}; that is, Wh is the multiplier for the inputs
of layer h. In addition, ζ(·) denote the activation function of
a cluster in AADRNN.

Accordingly, in real-time operation, the forward pass of
AADRNN model for the given input vector xi is computed

as:

x̂(i,1) = ζ([xi, 1]W1) (1)
x̂(i,h) = ζ([x̂(i,h−1), 1]Wh) ∀h ∈ {2, . . . ,H − 1}, (2)
x̂i = [x̂(i,H−1), 1]WH , (3)

where x̂(i,h) is the output of layer h for packet i, and the term
[xi, 1] or [x̂(i,h), 1] indicates that 1 is added to the input of
each layer as a multiplier of the bias.

The activation function ζ(·) is defined as [48]:

ζ(Λ) =
p (r + λ+) + λ− + Λ

2 [λ− + Λ]
(4)

−

√(p (r + λ+) + λ− + Λ

2 [λ− + Λ]

)2

− λ+

λ− + Λ
,

where Λ is the input of the given cluster, p is the probability
that any neuron received trigger transmits a trigger to some
other neuron, and λ+ and λ− are respectively the rates of
external Poisson flows of excitatory and inhibitory input spikes
to any neuron.

3) Decision Making: The last step in the attack detection
process is making the attack decision. Since the AADRNN
output provides the expected metrics for normal network
traffic, any deviation of the actual metrics from the AADRNN
output, i.e. the expected metrics, indicates malicious traffic.
Therefore, we use a lightweight decision making approach
based on comparison of actual and expected metric values.
In particular, we measure the deviation of the actual metrics
xi from the expected metrics x̂i. On the other hand, since
AADRNN-based IDS uses different set of metrics for mali-
cious traffic detection and compromised device identification
tasks, the decision making approach is also slightly different
for each task. One should note that this lightweight decision
making approach requires no human intervention or parameter
settings based on offline data; therefore, it is suitable for online
learning IDS.

For malicious traffic detection, the decision maker calcu-
lates the output of IDS, yi, as the average absolute difference
between the actual and the expected metric values:

yi =
1

M

M∑
m=1

|xm
i − x̂m

i |. (5)

For compromised device identification, the decision
maker calculates the output of IDS as the maximum absolute
difference between the actual and the expected metric values:

yi = max
m∈{1,...,M}

(|xm
i − x̂m

i |). (6)

C. Learning Algorithm to Create AADRNN

In order to create an AADRNN, we train an DRNN model
based on a batch of packet samples, denoted by Bl, collected
and provided by the proposed SSID framework at any learning
phase l. To this end, we use the learning algorithm, used
for DRNN in earlier research [7], [8], [54], which shall be
reviewed in this subsection.

6

1) Initial Learning: As we use sequential learning to create
an auto-associative memory from DRNN (namely, AADRNN),
each weight matrix Wh is learned and updated based on
only the batch of benign packets Bl provided by the SSID
framework.

When the learning algorithm is called by SSID for Bl at
initial learning phase l = 0, we solve the following prob-
lem using A Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [58]:

Wh = argmin
{W :W≥ 0}

(∣∣∣∣∣∣[adj(ζ(X̂ train
l,h−1WR)),1k×1]W

− X̂ train
l,h−1

∣∣∣∣∣∣2
L2

+ ||W ||L1

)
, (7)

where WR is a random weight matrix whose elements are in
(0, 1) and X̂ train

l,h is the matrix that collects the output vectors
of layer h for all packets i ∈ Bl if yi = 0:

X̂ train
l,h = {x̂(i,h), ∀i ∈ Bl}, (8)

X̂ train
l,0 = {xi, ∀i ∈ Bl}, and X̂ train

l,H = {x̂i, ∀i ∈ Bl}

After FISTA is performed for a predefined number of iterations
to solve (7), we normalize the resulting weight matrix Wh:

Wh ← 0.1
Wh

max
(
X̂ train

i,h

) . (9)

2) Online Incremental Learning: During the online incre-
mental learning of IDS parameters (i.e. l ≥ 1), only the
connection weights of the output layer of AADRNN, W l

H ,
are updated via the second stage to learn the new patterns of
the benign traffic provided by SSID via Bl. As the incremental
learning algorithm, we mainly integrate the sequential learning
algorithm developed in [59]. Let define the operation matrix
Ol, which is initialized for l = 0 as the inverse of the Gram
matrix:

O0 =
[
(X̂ train

l,H)T X̂ train
l,H

]−1

(10)

If there is at least one benign packet in Bl, we first compute
the value of Ol for l ≥ 1:

Ol = Ol−1−Ol−1(X̂
train
l,H−1)

T (11)[
I + X̂ train

l,H−1Ol−1(X̂
train
l,H−1)

T
]−1

X̂ train
l,H−1Ol−1

Then, the value of WH is updated:

WH ←WH +Ol(X̂
train
l,H−1)

T (X̂ train
l,0 − X̂ train

l,H−1WH) (12)

3) Learning Error Provided to the SSID Framework:
Furthermore, since we use an anomaly-based algorithm that
learns only the benign traffic, we take the learning error as the
mean of estimated attack probabilities for packets in learning
batch Bl:

E(l) = 1

|Bl|
∑
i∈Bl

yi (13)

IV. THE SELF-SUPERVISED INTRUSION DETECTION
FRAMEWORK

As the main contribution of this paper, we propose the
novel SSID framework to enable fully online self-supervised
learning of the parameters of IDS with no need for human
intervention. In order to clearly present the SSID framework,
this section first explains the main functionalities of both the
initial and online learning phases through Figure 2. Then, the
comprehensive methodology, that includes the details regard-
ing all the blocks in Figure 3, is presented.

Continuous Intrusion Detection

Initial Set-up of IDS

.
Online Learning

Phase
Initial Learning

Phase

Updating
 Parameters

Online Learning
Phase

Updating Parameters
Updating

 Parameters

UPDATE
when IDS is not

trustworthy enough

Time

Fig. 2. Detection and learning processes of IDS within the Fully Online
Self-Supervised Intrusion Detection (SSID) framework

As shown in Figure 2, within the SSID framework, there
are two main operations performed, intrusion detection (lower
line) and learning (upper line). Intrusion detection is the main
operation performed by IDS and is not modified by SSID. That
is, intrusion detection (as an operation) is defined only by a
particular IDS algorithm used in SSID. On the other hand,
we can say that our SSID framework ensures that IDS makes
accurate decisions by updating its parameters with online self-
supervised learning, and it performs intrusion detection unin-
terruptedly and continuously. Regarding the communication
(data transfer) between intrusion detection and online self-
supervised learning processes in SSID, it is important to note
that SSID uses the decisions of IDS to enable self-supervised
learning during either initial or online learning phases.

A. Online Self-Supervised Learning

In parallel with attack detection, our SSID framework
provides online self-supervised learning of IDS parameters,
as shown on the upper process line in Figure 2. As seen in
that figure and Figure 3 which shows the learning process in
SSID, the online self-supervised learning process starts with
the initial learning phase (namely, l = 0) and continues with
successive online learning phases.

Since network traffic characteristics may vary with time
and substantially affect the IDS detection performance, it is
crucial to update the parameters of the IDS online concurrently
with its real-time operation. The parameter updates conducted
through online learning serve to enhance the reliability of the
IDS as a detector by enhancing its performance and ensuring
it remains aligned with the latest traffic characteristics. Online
learning also circumvents the need to collect and label exten-
sive datasets for offline training, thereby conserving both time

7

Arrival of
Packet

INITIAL LEARNING

Self-Supervised
Packet

Selection else

Initial Learning is
Completed

UPDATE
IDS

PARAMETERS
Continue

Initial Learning

else

if
selected Check

 Completion
Criterion

if
satisfied

ONLINE LEARNING

Collect Packet
Samples into the
Learning Batch

Self-Supervised
Packet

Selection

Check
Update

Criterion

if
satisfied

else

Current Phase is
Completed

Continue
Current Phase

if
selected

UPDATE
IDS

PARAMETERS

else

IDS

Updated
Parameters

Updated
Parameters

Fig. 3. Block diagram of the learning process in the SSID framework for online self-supervised learning of the parameters of IDS

and resources. In situations where labeled datasets are readily
accessible, the IDS can be pre-trained, and its performance
can be validated using those datasets.

1) Initial Learning: The initial learning phase in SSID can
be considered a special case of the proposed methodology of
self-supervised learning, which allows IDS to be used from its
initial setup and updates the parameters of the IDS frequently
achieving the desired performance gradually and quickly.

In detail, as shown in the top block of Figure 3, during
the initial learning phase in SSID, the parameters of the IDS
are updated for each packet that is selected for learning via
our self-supervised packet selection methodology. Whether the
parameters of the IDS are updated or not, SSID checks the
trust based completion criterion of the initial learning phase
l = 0 aiming to complete this phase as soon as the IDS is
trained enough to make trustworthy decisions. To this end,
it first calculates the trustworthiness of the IDS, namely the
“trust coefficient” denoted by Γ ∈ [0, 1], which indicates the
confidence of SSID in any decision made by the IDS. Since the
IDS does not have any information about the network traffic
patterns yet, SSID cannot judge the decisions of the IDS and
starts the initial learning process with Γ = 0 meaning that
there is no trust in the decisions of the IDS.

Subsequently, SSID checks the trust criterion to complete
the initial learning phase l = 0 by measuring if SSID’s trust in
the IDS is greater than a threshold Θ, is the minimum desired
trust level:

if Γ ≥ Θ, complete initial learning and set l = 1 (14)

Thus, as given in (14), if Γ ≥ Θ, the initial learning phase
has been completed, and the next packet will be considered
for the first phase l = 1 of continuous online learning.

2) Online Learning: After the initial learning is completed,
the parameters of IDS are updated via an online learning phase
l ≥ 1 when the trust of SSID in the IDS is unacceptably low.
As the lower block in Figure 3 shows, the parameters of the

IDS are updated for a collected batch of packets when the
trustworthiness of the IDS is not acceptable anymore. When
SSID is in the online learning phase l ≥ 1, each packet
i selected by our self-supervised packet selection method is
collected into the batch of training packets, Bl.

Then, SSID checks the trust-based criterion to update the
parameters of the IDS. Inversely with the initial learning phase,
SSID now updates the parameters of the IDS if Γ < Θ, at least
K packets are collected for learning (i.e. |Bl| ≥ K), and there
is no attack detected by the IDS:

if Γ < Θ and |Bl| ≥ K and
1

I

i∑
j=i−I+1

yj ≤ γ,

update parameters and set l = l + 1 (15)

where I is the number of packets to calculate the average of
the intrusion decisions, γ is the intrusion threshold, and K
is provided by the user considering properties of the network
and learning algorithm. Limit of minimum K packets is added
only to provide practical efficiency for training.

That is, by (15), SSID waits for a considerable decrease
in the trustworthiness of the decisions of IDS to update the
parameters since Γ is known to be already greater than Θ at
the end of the initial learning phase l = 0. In this way, the
learning is performed when it is essential.

On the other hand, if an intrusion is detected where the
average output of the IDS is greater than γ, SSID clears the
batch of collected packet samples, Bl:

if
1

I

i∑
j=i−I

yj > γ, empty Bl (16)

With this cleanup, SSID aims to prevent the IDS from learning
any false negative instances since false negative outputs are
very likely to occur just before an attack is detected.

8

B. Self-Supervised Packet Selection

In the remainder of this section, we present our proposed
methodology to train the utilized IDS in a self-supervised
fashion enabling the fully online property of SSID. In other
words, we explain the details of the learning process in SSID,
which are shown as subblocks in Figure 3.

As the first operation of the learning process in SSID, each
packet i is decided to be used in learning for the next update
of IDS parameters. The packet selection is executed in a self-
supervised manner that only considers the output of the IDS
together with SSID’s trust in it.

Let p−i and p+i respectively be the probability of selecting
packet i to be used as a benign or malicious packet sample
in the training of IDS, and qi be the probability of rejecting
i to be used in training. That is, we select the packet i as the
sample of a benign packet with probability p−i or that of an
attack packet with probability p+i to use it in training, or the
packet i is not included in the training set with probability qi.
Also, recall that yi ∈ [0, 1] is the output of IDS for packet i.

Since we assume that there are no packet labeling mecha-
nisms or labor to prepare packet data for learning, we select
each packet i based on the output of IDS (which is the
estimation of the probability of packet i being malicious)
considering how trustworthy IDS is. Therefore, we shall also
define a trust coefficient Γ to measure the trustworthiness of
IDS at any time based on the representativeness of the packet
samples that IDS learned until the end of the last learning
phase and the generalization ability of IDS from these samples.

Accordingly, we start by defining p+i as

p+i ≡ (trust in IDS) (est. prob. of packet i being malicious)

p+i = Γ yi (17)

We further define p−i similarly to p+i :

p−i ≡ (trust in IDS) (est. prob. of packet i being normal)

p−i = Γ (1− yi) (18)

Subsequently, since

p+i + p−i + qi = 1, (19)

the probability qi of not selecting the packet i for training is:

qi = 1− (p+i + p−i)

= 1− Γ (20)

Recall that SSID starts with Γ = 0 since the IDS does not
have yet any information about the network traffic patterns at
the initial learning phase. That is, the output of the IDS is
calculated using the initial parameter values (if available) and
will not be able to achieve accurate detection for the particular
traffic. In addition, for selecting the first packet, the parameters
of the IDS are updated for the first time using p−i = 1, p+i = 0,
and qi = 0. Thus, SSID selects the first packet to learn as a
benign sample.

C. Trustworthiness of IDS

Now, we determine the trust coefficient Γ for the IDS in the
SSID framework. Through this coefficient, we aim to include
both the effects of changes in the normal behavior of network
traffic over time and the generalization ability of the IDS into
the packet selection model for learning.

To this end, we first define the factor of “representative-
ness”, denoted by Crep, for the traffic packets that are learned
by the IDS. The representativeness factor Crep takes a value
in the range of [0, 1] and measures how much the packets used
for learning (during all of the past learning phases) represent
the total observed traffic.

In addition, we define the factor of “generalization ability”,
denoted by Cgen, of the IDS. The generalization factor Cgen

takes a value in the range of [0, 1] and is calculated only at the
end of each parameter update since it is the only time when
the parameters of the IDS are updated. These two factors shall
respectively be given in Section IV-D and Section IV-E.

Accordingly, in (21), we determine the trust coefficient Γ
as the multiplication of Crep and Cgen:

Γ = Crep Cgen (21)

In this way, Γ simultaneously measures how much the IDS
is able to learn and generalize from provided traffic packets
and how much these packets reflect actual traffic patterns.
That is, through this trust coefficient, we evaluate how much
information the IDS can generalize from the traffic packets
provided to make decisions for the upcoming traffic.

D. Representativeness of the Traffic that is Learned (Crep)

In order to calculate the representativeness of the packet
traffic used during the earlier learning phases, we compare the
learned traffic with the total observed traffic through Kullback-
Leibler (KL)-Divergence [60]. Therefore, there are two sets of
traffic packets for comparison, the packets used in the previous
learning phases up to and including l (where l is the latest
completed learning phase) and the normal packets that are
observed by IDS during continuous detection.

During this comparison, we assume that the packet traffic
consists of two main properties, inter-transmission time (TT)
and the packet length (PL) since these properties can be
considered as the basis of traffic metrics, which are the inputs
of the IDS. Inter-transmission time (TT) refers to the duration
between the transmissions of consecutive packets, while packet
length (PL) denotes the size of each packet in the network
traffic. These properties are crucial as they directly reflect the
behaviour and characteristics of network traffic, thus serving as
fundamental metrics for IDS to analyse and detect anomalies
or malicious activities effectively.

We further assume that packet arrivals –any sample col-
lected from the network traffic– has a Poisson distribution
so that the inter-transmission time TT is an Exponentially-
distributed random variable. The packet length PL is also
assumed to be an Exponentially-distributed random variable
because the header length is considerably larger than the mes-
sage length for the majority of IoT applications. In addition,
TT and PL are considered to be independent. On the other

9

hand, for particular applications, these assumptions and the
traffic model can be changed and the below methodology can
easily be adapted for the new traffic model with a new set of
assumptions.

Furthermore, let STT
l and SPL

l respectively denote the sets
of the inter-transmission times and lengths of all packets
learned at the end of l, and STT

o and SPL
o respectively denote

the same of all normal packets observed during continuous
detection. In addition, according to our assumptions, STT

l and
STT
o have exponential distributions with means of 1/λl and

1/λo while SPL
l and SPL

o also have exponential distributions
with means of 1/µl and 1/µo.

1) KL-Divergence for Inter-Transmission Times: For the
set of inter-transmission times, DKL(S

TT
o ||STT

l) is KL-
Divergence from STT

l to STT
o measuring the information

gain achieved if STT
o would be used instead of STT

l which
has been used during the learning phases of SSID. Note
that small KL-Divergence means low information gain, and
DKL(S

TT
o ||STT

l) = 0 shows that STT
o and STT

l provide the
same amount of information. Accordingly, using the definition
of KL-Divergence [60], we first calculate DKL(S

TT
o ||STT

l),
which can shortly be denoted by DTT

KL, as

DTT
KL =

∫ ∞

−∞
f(x;λo)log(

f(x;λo)

f(x;λl)
) dx (22)

= Ef(x;λo)

[
log(

f(x;λo)

f(x;λl)
)
]

= Ef(x;λo)

[
log(

λo

λl
)− x(λo − λl)

]
where f(x;λo) and f(x;λl) denote the probability distribution
functions of STT

o and STT
l respectively with parameters λo

and λl. This leads to the result of

DTT
KL = log(

λo

λl
)− (λo − λl)

λo
(23)

2) KL-Divergence for Packet Lengths: Similarly with trans-
mission times, for the set of packet lengths, DKL(S

PL
o ||SPL

l)
is KL-Divergence from SPL

l to SPL
o , which is shortly denoted

by DPL
KL, and is calculated as

DPL
KL =

∫ ∞

−∞
f(x;µo)log(

f(x;µo)

f(x;µl)
) dx (24)

= Ef(x;µo)

[
log(

f(x;µo)

f(x;µl)
)
]

= Ef(x;µo)

[
log(

µo

µl
)− x(µo − µl)

]
where f(x;µo) and f(x;µl) denote the probability distribution
functions of SPL

o and SPL
l respectively with parameters µo

and µl. This results in:

DPL
KL = log(

µo

µl
)− (µo − µl)

µo
(25)

3) Representativeness Factor based on Normalized KL-
Divergence: For both transmission times and packet lengths,
we now obtained the KL-Divergence between the set of
observed packets and the set of packets learned. However, the
KL-Divergence cannot directly be used as a representativeness
factor because of the following reasons: 1) It has no upper

bound but the representativeness factor Crep ∈ [0, 1]. 2) KL-
Divergence is decreasing function of the similarity between
two sets but we need an increasing function of that as the
name “representativeness” suggests. 3) This factor should be
the combination of DTT

KL and DPL
KL.

Therefore, in order to obtain the representativeness factor,
we first normalize each of DTT

KL and DPL
KL as

DTT
KL−norm = e−DTT

KL , (26)

DPL
KL−norm = e−DPL

KL . (27)

which solve the issues 1) and 2) stated above. Each of these
normalized divergence measures can also be written in terms
of only the traffic parameters:

DPL
KL−norm = e

−
[
log(λo

λl
)− (λo−λl)

λo

]
=

[λl

λo
e−

(λl−λo)

λo

]
(28)

Similarly,

DPL
KL−norm = e

−
[
log(µo

µl
)− (µo−µl)

µo

]
=

[µl

µo
e−

(µl−µo)

µo

]
(29)

Then, we combine DTT
KL−norm and DPL

KL−norm into the
“representativeness factor” Crep as

Crep = c1D
TT
KL−norm + c2D

PL
KL−norm (30)

where c1 ≤ 1 and c2 ≤ 1 are positive constants that satisfy
c1 + c2 = 1.

In order to weigh transmission times and packet lengths
equally, we take c1 = c2 = 0.5. That is, we take their average:

Crep =
1

2

[
DTT

KL−norm +DPL
KL−norm

]
(31)

=
1

2

[
e−DTT

KL + e−DPL
KL

]
We can rewrite (31) only in terms of the traffic parameters
using (28) and (29):

Crep =
1

2

[λl

λo
e−

(λl−λo)

λo +
µl

µo
e−

(µl−µo)

µo

]
(32)

E. Generalization Ability of IDS (Cgen)

As stated above, we consider the generalization ability of
the IDS as one of two factors that define the trustworthiness
of intrusion decisions. To this end, the aim of this subsection
is to determine the generalization ability of the IDS in simple
terms to make its computation as easy as possible using the
available measures during the execution of SSID. Accordingly,
we start with the basic definition of generalization [61]:

Generalization ≡ Data + Knowledge

stating that the generalization depends on the “Data”, which is
denoted by ∆ and refers to the adequacy of the packet samples
that are used for learning, and the “Knowledge”, which is
denoted by κ and refers to the knowledge of the IDS obtained

10

from packets learned. Therefore, we define the generalization
factor Cgen as

Cgen = c3 ∆+ c4 κ (33)

where c3 and c4 are positive constants such that c3, c4 ≤ 1,
and c3 + c4 = 1.

1) Data Adequacy (∆): We evaluate the adequacy of the
packet samples that are used for learning with respect to the
number of learnable parameters in the IDS. Although there is
no hard rule for determining the adequacy of the learning data
(i.e., the number of training samples required) for a given DL
model, most studies have shown its relationship to the total
number of learnable parameters in the model and taken the
minimum number of required training samples as a multiple
of the number of parameters [62].

Therefore, we define the ∆ as the counterpart of the ratio
of the number of learnable parameters in the IDS to the
total number of packet samples used for learning up to and
including learning phase l:

∆ =
[
1−min

(W∑l
k=0 |Bk|

, 1
)]

(34)

where
∑l

k=0 |Bk| is the total number of packet samples that
are sequentially used to learn model parameters until the end
of learning phase l. Clearly, ∆ takes value in [0, 1]. While W
is a constant number and |Bl| ≥ 1 for any learning phase l (in
which a learning is performed), liml→∞(∆) = 1. In addition,
∆ = 0 when

∑l
k=0 |Bk| ≤W .

2) Knowledge (κ): We consider knowledge to be the mea-
sure of the DL model’s expected performance for the upcom-
ing traffic packets. Subsequently, we measure the knowledge
(i.e. expected performance) of the IDS based on its perfor-
mance on the packet samples used for learning and on the
online available validation data.

To this end, in this paper, we consider the worst-case
scenario when there is no validation data available. E(l) is
the empirical error measured at the end of learning phase l on
both packet samples learned and validation data (if available),
such that 0 ≤ E(l) ≤ 1. We then define the knowledge κ as
the counterpart of the exponentially weighted moving average
of empirical errors for all learning phases up to and including
the l–th phase:

κ = 1−
l∑

k=0

(
1

2
)(l−k+1) E(k) (35)

where the multiplier is set as 1/2 to keep the value of κ in
[0, 1]. That is, if the empirical training error decreases with the
successive learning phases (i.e. E(l) is the decreasing function
of l), the knowledge of the IDS increases converging to its
maximum.

In practice, at the end of each learning phase l, κ can easily
be updated using only its previous value and the empirical
error E(l) as

κ← 1

2
− 1

2

[
E(l)− κ

]
(36)

3) Generalization Factor: We now easily calculate the
generalization factor Cgen combining the “data adequacy”
∆ (34) and “knowledge” κ (35) using the definition of the
generalization factor (33):

Cgen = (37)

c3

[
1−min

(W∑l
k=0 |Bk|

, 1
)]

+ c4

[
1−

l∑
k=0

(
1

2
)(l−k+1) E(k)

]
We particularly set c3 = c4 = 0.5 representing that the data

and knowledge are equally important for generalization:

Cgen = (38)

1−
min

(
W/

∑l
k=0 |Bk|, 1

)
+

∑l
k=0 (1/2)

(l−k+1) E(k)
2

V. RESULTS

We now evaluate the performance of SSID framework for
two different intrusion detection tasks to identify malicious
traffic packets and compromised devices.

A. Parameter Settings for SSID

First, we set the parameters of SSID as follows: trust
threshold Θ = 0.95, number of packets observed for decision
I = 10, minimum number of training packets K = 100, and
intrusion threshold γ = 0.25. That is, SSID aims to keep
the trust in the IDS above 0.95 while it considers a packet
as malicious if the output of the IDS is above 0.25. IDS
analyses I = 10 packets to make robust intrusion decisions,
which allows IDS to make early decisions while not being too
reactive to instantaneous changes. In addition, the parameters
are updated using at least K = 100 packets in a learning batch
for computational efficiency.

B. Datasets

Since the proposed SSID framework provides online learn-
ing for the IDS, its performance is evaluated using two well-
known datasets, Kitsune [17], [63] and Bot-IoT [18], which
contain the actual packet transmissions for both normal and
malicious traffic over time. These are two of the most recent
and used datasets on Botnet and DDoS attacks.

Some other examples of such datasets are UNSW-NB15
[64], CICIDS 2017 [65], and IoT-23 [34]. The UNSW-NB15
dataset focuses on general network intrusion detection, not
specifically focuses on botnet activities, capturing a wide
range of network activities, while CICIDS 2017 emphasizes
both traditional and IoT-specific attacks in controlled lab
environments. IoT-23 is tailored for studying IoT-specific
security challenges, offering data from various IoT devices.
Meanwhile, Bot-IoT and Kitsune datasets specifically focuses
on IoT DoS and DDoS attacks. They include realistic IoT
device behaviors and various types of botnet activities, such
as command and control communication, malware propaga-
tion, and reconnaissance scans. These datasets offer a com-
prehensive collection of normal and malicious traffic data
for benchmarking attack detection and compromised device
identification systems.

11

In the rest of this section, for malicious traffic detection
and compromised device identification during Mirai Botnet
attack, we first use the well-known Kitsune dataset [17], which
contains 764, 137 packet transmissions of both normal and
attack traffic cover a consecutive time period of roughly 7137
seconds. Of the total 764, 137 packets exchanged between
107 distinct IP addresses in this dataset, 121, 621 are nor-
mal packets and 642, 516 are malicious packets. Then, for
compromised device identification, in addition to the Mirai
Botnet, we use the following data: 1) SYN DoS attack from
the Kitsune dataset, 2) DDoS attacks using HTTP, TCP and
UDP protocols from the Bot-IoT dataset, and 3) DoS attack
using HTTP protocol from the Bot-IoT dataset. The data of
SYN DoS, DDoS HTTP, DDoS TCP, DDoS UDP, and DoS
HTTP are respectively comprised of “2, 771, 276”, “19, 826”,
“19, 548, 235”, “18, 965, 736”, and “29, 762” packets.

C. Performance Evaluation for Malicious Traffic Detection

The performance of SSID is first evaluated for malicious
traffic detection during Mirai Botnet attack. Figure 4 displays
the ROC curve, where the x-axis of this figure is plotted in
logarithmic scale. We see that AADRNN-based IDS trained
under our novel SSID framework achieves significantly high
TPR above 0.995 even for very low FPR about 10−5.

Fig. 4. ROC curve for the performance of AADRNN-based IDS under the
SSID framework for malicious traffic detection

In more detail, in Figure 5, we present the predictions
and Γ of SSID with respect to time. This figure reveals an
important fact that while the IDS is completely indecisive at
the beginning, SSID framework enables it to learn the normal
traffic very quickly. As a result, SSID makes significantly low
false alarms although it learns –fully online– during real-time
operation based only on its own decision using no external
(offline collected) dataset. We also see that Γ accurately
reflects the trustworthiness of decisions made by AADRNN.
In addition, although Γ slightly decreases as a result of random
packet selection, especially after attack starts, the parameters
of AADRNN are not updated by SSID as the traffic is detected
as malicious.

1) Comparison with Incremental and Offline Learning:
We further compare the performance of AADRNN under
SSID with the performance of AADRNN with incremental
and offline learning. All methods with offline learning are
trained using the first 83, 000 benign traffic packets while the

Fig. 5. Predictions of SSID and the value of trust coefficient Γ with respect
to time

AADRNN with incremental learning is trained periodically for
the window of 750 packets using AADRNN’s own decision,
where the first 750 packets received are assumed to be normal
packets during the cold-start of the network.

Fig. 6. Performance comparison between the AADRNN under SSID and the
AADRNN with incremental and offline learning

Figure 6 displays the performances of SSID and the
AADRNN, with incremental and offline learning. The results
in this figure first reveal that the fully online trained AADRNN
using the SSID framework achieves competitive results with
the AADRNN which is trained offline using approximately
83, 000 packets. We also see that the SSID significantly
outperforms the AADRNN with incremental learning with
respect to all performance metrics. Also note that the SSID
learned from a total of 4, 161 packets while also conducting
real-time attack detection.

In contrast with offline and incremental learning, SSID
framework assumes only that the first packet is known to be
benign so the duration of cold-start equals the transmission
of a single traffic packet. That is, using no offline dataset
or requiring no cold-start, the SSID framework is able train
an DL-based IDS to achieve considerably high performance
which is highly competitive against the DL models trained on
significantly large dataset.

2) A Different DL Model –MLP– under the SSID Frame-
work: During the performance evaluation of the SSID frame-
work, we also use MLP, which is one of the most popular
feed-forward neural networks used for various tasks such as

12

signal processing, forecasting, anomaly detection, etc. As also
reviewed in Section II, various works [19], [22], [23], [30]
used MLP to develop different IDS methods.

Similar to the AADRNN, the MLP model that we use is also
comprised of M layers with M neurons each. Each neuron has
sigmoid activation function as

ζ(Λ) =
1

1 + e−Λ
, (39)

where Λ is an input to the neural activation.
In both the initial and online learning stages, the parameters

of the MLP are updated using the state-of-the-art optimizer
Adam. In each online learning phase, incremental learning is
applied by starting parameter optimization from the connection
weight values already in use at the beginning of that phase.

In order to further analyze the impact of the proposed SSID
framework on the performance of a different DL model, we
evaluate the performance of the well-known MLP under the
SSID framework (called SSID-MLP) and compare it with the
performance of MLP with offline and incremental learning,
respectively. The results of this performance evaluation is
presented in Figure 7.

Fig. 7. Performance comparison between the SSID-MLP and the MLP with
incremental and offline learning

Figure 7 shows that SSID-MLP achieves slightly higher
Accuracy and TPR than MLP with offline learning, although
MLP with offline learning raises no false alarms at all (i.e.
with 100% TNR). Moreover, we see that SSID-MLP signif-
icantly outperforms the MLP model that is also trained via
incremental learning periodically for every 750 packets based
on its own output.

3) Comparison of Different DL Models: We further com-
pare the performance of AADRNN under SSID (called SSID-
AADRNN for clarity) and SSID-MLP with those of some
well-known ML models, including KNN and Lasso with
offline learning. Note that models with offline learning are
trained using a labeled normal traffic data. Also, note that
Lasso, KNN, and MLP are well-known and commonly used
models for Botnet attack detection and compromised device
identification [22], [23], [29], [41]. Figure 8 displays the
performance of all compared models with respect to Accuracy,
TPR and TNR. The results in this figure show that SSID-
MLP achieves the second-best performance with respect to all
performance metrics. In addition, both SSID-MLP and SSID-
AADRNN achieve highly competitive results with the offline

trained DL models, while the SSID framework completely
eliminates the need for data collection and labeling.

Fig. 8. Performance comparison between the ML models under the SSID
framework and those with offline learning

D. Performance Evaluation for Compromised Device Identifi-
cation

We now evaluate the performance of CDIS [8] (using
the methodology in Section III) under the SSID framework,
in short SSID-CDIS, on six different attacks, from the two
distinct datasets Kitsune and Bot-IoT. For each dataset, the
performance of SSID-CDIS is compared with the CDIS tech-
nique with sequential learning. Using the same methods as
in [8], compromised device identification is performed for a
10 seconds long time window. The performance is evaluated
using the Balanced Accuracy [66].

Fig. 9. Performance comparison of the CDIS trained under the SSID
framework with that under sequential learning on Kitsune dataset

Figure 9 displays the performance of SSID-CDIS and its
comparison with CDIS to identify compromised IP addresses,
for each of the Mirai Botnet and SYN DoS attacks in the
Kitsune dataset. Specifically it shows that while the SSID
framework provides the same performance as sequential learn-
ing to identify compromised devices during a Mirai Botnet
attack, it significantly improves the overall performance of
CDIS during a SYN DoS attack. The box plot on the right
of Figure 9 shows that SSID-CDIS achieves 100% median
balanced accuracy when there is only one outlier IP address
with around 85% accuracy. On the other hand, the sequentially

13

trained CDIS has two outlier IP addresses with performances
of 50% and 1%, respectively.

TABLE II
COMPARISON OF AVERAGE PERFORMANCE OVER IP ADDRESSES

BETWEEN SSID-CDIS AND DIFFERENT ML MODELS FOR MIRAI BOTNET
FROM THE KITSUNE DATASET

Models Balanced
Accuracy TPR TNR

SSID-CDIS 89.1 60.6 87.7
CDIS 87.7 90.3 79.4
MLP 82.7 67.5 78
Lasso 85.1 86.7 75.6
KNN 82.1 74.4 74.1

In Table II, we present the average performance of the
SSID-CDIS against each of Lasso, KNN, and MLP with
respect to Balanced Accuracy, TPR and TNR on Kitsune
Mirai dataset. The results in this table show that SSID-CDIS
achieves much higher Balanced Accuracy and TNR than other
models. Although its average TPR is considerably low, SSID-
CDIS provides a reasonable compromised device identification
accuracy with a much lower false alarm rate compared to other
models.

Fig. 10. Performance comparison of the CDIS trained under the SSID
framework with that under sequential learning on Bot-IoT dataset

Figure 10 exhibits the performance of the SSID-CDIS
system, and compares it with CDIS, to identify compromised
IP addresses during DDoS and DoS attacks, using different
communication protocols available in the Bot-IoT dataset.
These results show that the SSID framework achieves higher
identification performance, as compared to the use of CDIS
sequential learning for the majority of attack types.

Starting with the box plot displayed at the far left of this
figure, we observe the following results:

1) For the DDoS HTTP attack, the overall performance
is almost the same for SSID and CDIS with sequen-
tial learning. However, as expected, performance varies
slightly for individual IP addresses.

2) For the DoS HTTP attack, using SSID improved the
performance by 2% on average with a minimum of 75%
balanced accuracy.

3) For the DDoS TCP attack, SSID significantly im-
proved the median accuracy by 18%, where SSID-CDIS

achieves 91% median accuracy. In addition, while the
balance accuracy of CDIS with sequential learning is
below 80% (with a minimum of 49%) for 9 out of 13
unique IP addresses, the balance accuracy of SSID-CDIS
is equal to 79% for only 2 IP addresses and above 80%
for the rest.

4) Similar to the results for the DDoS TCP attack, SSID
was seen to provide significant performance improve-
ment to identify compromised devices during a DDoS
UDP attack. The median accuracy increased by 11%,
achieving above 88% balanced accuracy for all IP ad-
dresses.

VI. CONCLUSION

This paper has proposed a novel Self-Supervised Intrusion
Detection (SSID) framework which is designed to train any
given IDS (whose parameters are calculated using the network
traffic) fully online with no need for human intervention
or prior offline training. The SSID framework comprises
two successive learning stages, namely initial learning and
online learning. Initial learning aims to quickly adapt the IDS
parameters to the network where the IDS is deployed. Online
learning aims to update the parameters whenever it is required
to ensure high detection accuracy of the IDS.

During the real-time operation of the IDS, in parallel to
detection, the SSID framework performs the following main
tasks:

• It continually estimates the trustworthiness of intrusion
decisions to identify normal and malicious traffic. It also
measures the ability of the IDS to learn and generalize
from data provided by SSID and the extent to which
this data can represent the current online network traffic
patterns.

• In order to provide training data for the IDS, the SSID
framework selects and labels network traffic packets in
a self-supervised manner based only on the decisions
of IDS, and on the trust of SSID with regard to those
decisions.

• The SSID framework determines when the IDS parame-
ters need to be updated, based on the trustworthiness of
the IDS, the selected training packets, and the latest state
of network security.

Thus the proposed SSID framework eliminates the need for
offline data collection, it prevents human errors in data labeling
avoiding labor and computational costs for model training
and data collection through experiments. Its most important
advantage is in terms of performance, and it enables IDS to
easily adapt to the time varying characteristics of the network
traffic.

We also evaluated the performance of the SSID framework
for two tasks: malicious traffic detection and compromised
device identification to enhance the security of an IoT network.
For malicious traffic detection, two different DL models,
AADRNN and MLP, have been deployed with the SSID
framework and tested on the Kitsune dataset. The results we
obtain reveal that the DL models trained under the SSID
framework without offline training also achieve considerably

14

high performance compared to the same models with offline
and incremental learning.

For compromised device identification, the performance of
the state-of-the-art CDIS has been tested under sequential
learning and the SSID framework on data from six different
cyberattacks provided by the two publicly available Kitsune
and Bot-IoT datasets. The results show that the use of SSID
significantly improves the performance of CDIS for the ma-
jority of cases considered.

Future work will evaluate the use of SSID for adapting
a pre-trained IDS for use across different networks whose
traffic has not been learned a priori, which seems to be
a promising approach for fast, self-supervised, and success-
ful adaptation of the IDS parameters for various networks.
It would also be interesting to examine security assurance
methods targeting distributed systems that combine the SSID
framework with Federated Learning and attack prevention or
mitigation algorithms. It seems that a successful integration
of the SSID framework with Federated Learning may provide
secure, distributed and self-supervised online learning for
collaborative systems.

APPENDIX

Table III and Table IV respectively display the list of
abbreviations and the list of symbols seen throughout this
paper.

TABLE III
LIST OF ABBREVIATIONS (IN ALPHABETIC ORDER)

Abbreviation Definition
AADRNN Auto-Associative Deep Random Neural Network
AAM Auto-Associative Memory
AE Auto Encoder
ANOVA Analysis of Variance
CDIS Compromised Device Identification System
CNN Convolutional Neural Network
DARPA Defense Advanced Research Projects Agency
DDoS Distributed Denial of Service
DL Deep Learning
DNS Domain Name System
DoS Denial of Service
DRNN Deep Random Neural Network
DT Decision Tree
ELM Extreme Learning Machine
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
IDS Intrusion Detection System
IoT Internet of Things
IP Internet Protocol
ISSL Incremental Semi-Supervised Learning
KL Kullback-Leibler
KNN K-Nearest Neighbour
Lasso Least Absolute Shrinkage and Selector Operator
LR Linear Regression
LSTM Long-Short Term Memory
M2M Machine-to-Machine
MitM Man-in-the-Middle
ML Machine Learning
MLP Multi-Layer Perceptron
NB Naive Bayes
RF Random Forest
RNN Random Neural Network
ROC Receiver Operating Characteristic
SSID Self-Supervised Intrusion Detection

TABLE IV
LIST OF SYMBOLS

Symbol Definition
M Total number of network traffic metrics which is equiv-

alent to the number of inputs to the IDS
xm
i The m− th metric extracted from network traffic for

packet i
xi The vector of input metrics, xi =

[x1
i , · · · xm

i , · · · , xM
i]

yi Binary output of the IDS indicating whether the packet
i is malicious

x̂i The output of DL-based AAM indicating the expected
value of xi in the absence of intrusion

Wh Matrix of connection weights (including biases) be-
tween layer h− 1 and h

W Total number of learnable parameters in the ML model
utilized in the IDS

ζ(·) Activation function of a cluster in AADRNN
Γ Trust coefficient indicating the trust of SSID on the

decisions of the IDS
Θ Threshold on the trust coefficient (i.e. minimum de-

sired value of Γ)
Bl Batch of packets selected for learning
K Minimum number of packets to be learned in each

learning phase
I Length of window in terms of the number of packets

to calculate average decision
γ Intrusion threshold
p−i Probability of selecting packet i to use as a benign

packet
p+i Probability of selecting packet i to use as a malicious

packet
qi Probability of rejecting packet i to use in training
Crep Factor of representativeness of the traffic packets

learned by IDS
Cgen Factor of generalization ability of IDS
STT
l Set of inter-transmission times of all packets learned

by IDS until the end of learning phase l, which has
mean of 1/λl

SPL
l Set of packet lengths times of all packets learned by

IDS until the end of learning phase l, which has mean
of 1/λo

STT
o Set of inter-transmission times of all normal packets

observed during continuous detection, which has mean
of 1/µl

SPL
o Set of packet lengths times of all normal packets

observed during continuous detection, which has mean
of 1/µo

DTT
KL KL-Divergence from STT

l to STT
o

DPL
KL KL-Divergence from SPL

l to SPL
o

DTT
KL−norm Normalized KL-Divergence from STT

l to STT
o

DPL
KL−norm Normalized KL-Divergence from SPL

l to SPL
o

∆ Adequacy of the packets learned by IDS
κ Knowledge of IDS obtained from the packets learned
E(l) Empirical error measured at the end of learning phase

l

REFERENCES

[1] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mech-
anisms: classification and state-of-the-art,” Computer networks, no. 5,
pp. 643–666, 2004.

[2] D. Goodin, “100,000-strong Botnet built on router 0-day could
strike at any time,” Ars Technica, December 2017. [Online].
Available: https://arstechnica.com/information-technology/2017/12/
100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/

[3] Imperva, “2022 Imperva Bad Bot Report,” p. 1–37, 2022. [Online].
Available: https://www.imperva.com/resources/resource-library/reports/
bad-bot-report/

[4] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli, and Y. Liu, “The impact
of dos attacks onresource-constrained iot devices: A study on the mirai
attack,” arXiv preprint arXiv:2104.09041, 2021.

https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/

15

[5] Cisco, Cisco Annual Internet Report (2018–2023), Mar. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html

[6] H. Liu and B. Lang, “Machine learning and deep learning methods for
intrusion detection systems: A survey,” applied sciences, vol. 9, no. 20,
p. 4396, 2019.

[7] M. Nakip and E. Gelenbe, “Botnet attack detection with incremental
online learning,” in Security in Computer and Information Sciences:
Second International Symposium, EuroCybersec 2021, Nice, France,
October 25–26, 2021, Revised Selected Papers. Springer, 2022, pp.
51–60.

[8] E. Gelenbe and M. Nakıp, “Traffic based sequential learning during
botnet attacks to identify compromised IoT devices,” IEEE Access,
vol. 10, pp. 126 536–126 549, 2022.

[9] H. M. Song and H. K. Kim, “Self-supervised anomaly detection for in-
vehicle network using noised pseudo normal data,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 2, pp. 1098–1108, 2021.

[10] Z. Wang, Z. Li, J. Wang, and D. Li, “Network intrusion detection
model based on improved byol self-supervised learning,” Security and
Communication Networks, vol. 2021, pp. 1–23, 2021.

[11] X. Zhang, J. Mu, X. Zhang, H. Liu, L. Zong, and Y. Li, “Deep anomaly
detection with self-supervised learning and adversarial training,” Pattern
Recognition, vol. 121, p. 108234, 2022.

[12] H. Kye, M. Kim, and M. Kwon, “Hierarchical detection of network
anomalies: A self-supervised learning approach,” IEEE Signal Process-
ing Letters, vol. 29, pp. 1908–1912, 2022.

[13] E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-e: A self-
supervised network intrusion detection system based on graph neural
networks,” Knowledge-Based Systems, vol. 258, p. 110030, 2022.

[14] W. Wang, S. Jian, Y. Tan, Q. Wu, and C. Huang, “Robust unsuper-
vised network intrusion detection with self-supervised masked context
reconstruction,” Computers & Security, vol. 128, p. 103131, 2023.

[15] M. Abououf, R. Mizouni, S. Singh, H. Otrok, and E. Damiani, “Self-
supervised online and lightweight anomaly and event detection for IoT
devices,” IEEE Internet of Things Journal, vol. 9, no. 24, pp. 25 285–
25 299, 2022.

[16] B. H. Meyer, A. T. Pozo, M. Nogueira, and W. M. Nunan Zola,
“Federated self-supervised learning for intrusion detection,” in 2023
IEEE Symposium Series on Computational Intelligence (SSCI), 2023,
pp. 822–828.

[17] “Kitsune Network Attack Dataset,” August 2020. [Online]. Available:
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune

[18] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-IoT dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18327687

[19] T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, N. T. K. Son et al.,
“Performance evaluation of botnet ddos attack detection using machine
learning,” Evolutionary Intelligence, pp. 1–12, 2019.

[20] Z. Shao, S. Yuan, and Y. Wang, “Adaptive online learning for IoT botnet
detection,” Information Sciences, vol. 574, pp. 84–95, 2021.

[21] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “Corrauc:
A malicious Bot-IoT traffic detection method in IoT network using
machine-learning techniques,” IEEE Internet of Things Journal, vol. 8,
no. 5, pp. 3242–3254, 2021.

[22] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[23] I. Letteri, M. Del Rosso, P. Caianiello, and D. Cassioli, “Performance
of botnet detection by neural networks in software-defined networks,”
in ITASEC, 2018.

[24] M. Banerjee and S. Samantaray, “Network traffic analysis based IoT
botnet detection using honeynet data applying classification techniques,”
International Journal of Computer Science and Information Security
(IJCSIS), vol. 17, no. 8, 2019.

[25] C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet detection
in the Internet of Things using deep learning approaches,” in 2018
international joint conference on neural networks (IJCNN). IEEE,
2018, pp. 1–8.

[26] C. Tzagkarakis, N. Petroulakis, and S. Ioannidis, “Botnet attack detec-
tion at the IoT edge based on sparse representation,” in 2019 Global
IoT Summit (GIoTS). IEEE, 2019, pp. 1–6.

[27] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of IoT botnet

attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.

[28] C. S. Htwe, Y. M. Thant, and M. M. S. Thwin, “Botnets attack detection
using machine learning approach for IoT environment,” in Journal of
Physics: Conference Series, vol. 1646, no. 1. IOP Publishing, 2020, p.
012101.

[29] S. Sriram, R. Vinayakumar, M. Alazab, and K. Soman, “Network flow
based IoT botnet attack detection using deep learning,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 189–194.

[30] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine
learning-based IoT-botnet attack detection with sequential architecture,”
Sensors, vol. 20, no. 16, p. 4372, 2020.

[31] G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
Internet of Things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, p. 102662, 2020.

[32] J. Liu, S. Liu, and S. Zhang, “Detection of IoT botnet based on deep
learning,” in 2019 Chinese Control Conference (CCC). IEEE, 2019,
pp. 8381–8385.

[33] G. Bovenzi, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Network anomaly detection methods in IoT environments
via deep learning: A fair comparison of performance and robustness,”
Computers & Security, vol. 128, p. 103167, 2023.

[34] S. Garcia, A. Parmisano, and M. J. Erquiaga, “IoT-23: A labeled
dataset with malicious and benign IoT network traffic,” May 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.4743746

[35] A. Kumar and T. J. Lim, “Early detection of mirai-like iot bots in large-
scale networks through sub-sampled packet traffic analysis,” in Future
of Information and Communication Conference. Springer, 2019, pp.
847–867.

[36] M. Chatterjee, A. S. Namin, and P. Datta, “Evidence fusion for malicious
bot detection in iot,” in 2018 IEEE International Conference on Big Data
(Big Data), 2018, pp. 4545–4548.

[37] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “DÏot: A federated self-learning anomaly detection sys-
tem for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 756–767.

[38] N. V. Abhishek, T. J. Lim, B. Sikdar, and A. Tandon, “An intrusion
detection system for detecting compromised gateways in clustered iot
networks,” in 2018 IEEE International Workshop Technical Committee
on Communications Quality and Reliability (CQR). IEEE, 2018, pp.
1–6.

[39] M. Taneja, “An analytics framework to detect compromised iot devices
using mobility behavior,” in 2013 International Conference on ICT
Convergence (ICTC), 2013, pp. 38–43.

[40] A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, “A method to
detect internet of things botnets,” in 2018 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EICon-
Rus). IEEE, 2018, pp. 105–108.

[41] T. N. Nguyen, Q.-D. Ngo, H.-T. Nguyen, and G. L. Nguyen, “An
advanced computing approach for iot-botnet detection in industrial
internet of things,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 11, pp. 8298–8306, 2022.

[42] A. Hristov and R. Trifonov, “A model for identification of compromised
devices as a result of cyberattack on iot devices,” in 2021 International
Conference on Information Technologies (InfoTech), 2021, pp. 1–4.

[43] T. Trajanovski and N. Zhang, “An automated and comprehensive frame-
work for iot botnet detection and analysis (iot-bda),” IEEE Access, vol. 9,
pp. 124 360–124 383, 2021.

[44] H. Bahşi, S. Nõmm, and F. B. La Torre, “Dimensionality reduction for
machine learning based iot botnet detection,” in 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV),
2018, pp. 1857–1862.

[45] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,
“Bootstrap your own latent-a new approach to self-supervised learning,”
Advances in neural information processing systems, vol. 33, pp. 21 271–
21 284, 2020.

[46] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 1, pp. 857–876, 2023.

[47] J. Yu, H. Yin, X. Xia, T. Chen, J. Li, and Z. Huang, “Self-supervised
learning for recommender systems: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 36, no. 1, pp. 335–355, 2024.

[48] E. Gelenbe and Y. Yin, “Deep learning with random neural networks:
I,” in 2016 International Joint Conference on Neural Networks (IJCNN),
2016, pp. 1633–1638.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune
https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://doi.org/10.5281/zenodo.4743746

16

[49] E. Gelenbe and Y. Yin, “Deep learning with dense random neural net-
works: II,” in International Conference on Man–Machine Interactions.
Springer, 2017, pp. 3–18.

[50] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, no. 4, pp. 502–
510, 1989.

[51] ——, “Learning in the recurrent random neural network,” Neural
Computation, vol. 5, no. 1, pp. 154–164, 1993.

[52] O. Brun et al., “Deep learning with dense random neural networks
for detecting attacks against IoT-connected home environments: I,” in
International ISCIS Cyber-Security Workshop. Springer, Cham, 2018,
pp. 79–89.

[53] O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense random
neural network for detecting attacks against iot-connected home envi-
ronments: II,” Procedia Computer Science, vol. 134, pp. 458–463, 2018.

[54] M. Nakip and E. Gelenbe, “Mirai botnet attack detection with auto-
associative dense random neural network,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM). IEEE, 2021, pp. 01–06.

[55] E. Gelenbe and M. Nakıp, “G-networks can detect different types
of cyberattacks,” in 2022 30th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2022, pp. 9–16.

[56] E. Gelenbe, “G-networks: a unifying model for neural and queueing
networks,” Annals of Operations Research, vol. 48, no. 5, pp. 433–461,
1994.

[57] S. Evmorfos et al., “Neural network architectures for the detection of
syn flood attacks in IoT systems,” in Proceedings of the 13th ACM
International Conference on PErvasive Technologies Related to Assistive
Environments, 2020, pp. 1–4.

[58] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[59] N.-y. Liang, G.-b. Huang, P. Saratchandran, and N. Sundararajan, “A
fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.
1411–1423, 2006.

[60] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[61] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical
learning theory,” Advanced Lectures on Machine Learning: ML Summer
Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen,
Germany, August 4-16, 2003, Revised Lectures, pp. 169–207, 2004.

[62] A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset
big enough? sample size requirements when using artificial neural
networks for discrete choice analysis,” Journal of choice modelling,
vol. 28, pp. 167–182, 2018.

[63] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
The Network and Distributed System Security Symposium (NDSS) 2018,
2018.

[64] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[65] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[66] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“The balanced accuracy and its posterior distribution,” in 2010 20th
international conference on pattern recognition. IEEE, 2010, pp. 3121–
3124.

Mert NAKIP obtained his B.Sc. degree, graduating
with the first rank in his class, and subsequently
completed his M.Sc. thesis in Electrical-Electronics
Engineering at Yaşar University (Izmir, Turkey) in
2018 and 2020, respectively. His design of a multi-
sensor fire detector utilizing ML achieved the na-
tional #1 ranking at the Industry-Focused Under-
graduate Graduation Projects Competition organized
by TÜBİTAK (Turkish Scientific and Technological
Research Council). His M.Sc. thesis, focusing on
applying machine learning techniques to Massive

Access of IoT, supported by the National Graduate Scholarship Program of
TÜBİTAK 2210C in High-Priority Technological Areas. He received his Ph.D.
from the Institute of Theoretical and Applied Informatics, Polish Academy of
Sciences (Gliwice, Poland) in January 2024, and is now serving as an Assistant
Professor there. He has participated in projects funded by TÜBİTAK and the
European Commission concerning IoT, cybersecurity, and machine learning.
Currently, he is involved in the DOSS project.

Erol GELENBE FIEEE, FACM, FIFIP, FRSS,
FIET, graduated from METU (Turkey), and received
the PhD from Polytechnic Institute of NYU, and
the DSc from Sorbonne University. He pioneered
system performance evaluation methods, and in-
vented the Random Neural Network, while help-
ing to develop commercial products including the
Queueing Network Analysis Package and the man-
ufacturing simulator FLEXSIM. He has graduated
over 90 PhDs including 94 women. Professor at
the Institute of Theoretical and Applied Informatics,

Polish Academy of Sciences, he previously held chairs at Imperial College,
University of Central Florida, Duke University, Université Paris-Descartes
and Paris-Saclay, and Université de Liège. His prizes include the Parlar
Foundation Science Award (Turkiye), Grand Prix France Télécom, the ACM
SIGMETRICS Life-Time Achievement Award, the UK IET Oliver Lodge
Medal and the Mustafa Prize. Elected Fellow of Academia Europaea, the
French National Acad. of Technologies, the Science Academies of Hungary,
Poland, Turkey and the Royal Acad. of Belgium. He was awarded Chevalier de
la Légion d’Honneur, Chevalier des Palmes Académiques and Commandeur
du Mérite by France, Commander of the Order of the Crown of Belgium,
Commendatore al Merito and Grande Ufficiale dell’Ordine della Stella by
Italy, and Officer of the Order of Merit of Poland. Principal Investigator of
numerous European Union research projects, Coordinator of FP7 NEMESYS
and H2020 SerIoT, he has also been supported by the US NSF, ONR, ARO,
the UKRI and industry.

	Introduction
	Related Work
	DDoS Botnet Attack Detection
	Compromised Device Identification
	Self-Supervised Learning for Intrusion Detection

	Intrusion Detection System Used in SSID
	Deep Random Neural Network as Auto-Associative Memory
	Intrusion Detection Process
	Traffic Metrics
	Estimation of the Expected Benign Traffic Metrics
	Decision Making

	Learning Algorithm to Create AADRNN
	Initial Learning
	Online Incremental Learning
	Learning Error Provided to the SSID Framework

	The Self-Supervised Intrusion Detection Framework
	Online Self-Supervised Learning
	Initial Learning
	Online Learning

	Self-Supervised Packet Selection
	Trustworthiness of IDS
	Representativeness of the Traffic that is Learned (Crep)
	KL-Divergence for Inter-Transmission Times
	KL-Divergence for Packet Lengths
	Representativeness Factor based on Normalized KL-Divergence

	Generalization Ability of IDS (Cgen)
	Data Adequacy ()
	Knowledge ()
	Generalization Factor

	Results
	Parameter Settings for SSID
	Datasets
	Performance Evaluation for Malicious Traffic Detection
	Comparison with Incremental and Offline Learning
	A Different DL Model –MLP– under the SSID Framework
	Comparison of Different DL Models

	Performance Evaluation for Compromised Device Identification

	Conclusion
	Appendix
	References
	Biographies
	Mert NAKIP
	Erol GELENBE

