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Abstract—Cyberattacks are increasingly threatening net-
worked systems, often with the emergence of new types of
unknown (zero-day) attacks and the rise of vulnerable devices.
While Machine Learning (ML)-based Intrusion Detection Sys-
tems (IDSs) have been shown to be extremely promising in
detecting these attacks, the need to learn large amounts of
labelled data often limits the applicability of ML-based IDSs
to cybersystems that only have access to private local data. To
address this issue, this paper proposes a novel Decentralized
and Online Federated Learning Intrusion Detection (DOF-ID)
architecture. DOF-ID is a collaborative learning system that
allows each IDS used for a cybersystem to learn from experience
gained in other cybersystems in addition to its own local data
without violating the data privacy of other systems. As the
performance evaluation results using public Kitsune and Bot-
IoT datasets show, DOF-ID significantly improves the intrusion
detection performance in all collaborating nodes simultaneously
with acceptable computation time for online learning.

Index Terms—Federated Learning, G-Networks, Intrusion De-
tection, Cybersecurity, Zero-Day Attacks, Machine Learning,
Deep Random Neural Network

I. INTRODUCTION

Intrusion Detection Systems (IDS), are important compo-
nents of overall cybersystem security, and have often been
developed using Machine Learning to detect anomalies and
threats in incoming network traffic [1]–[3] and multiclass
classification techniques have also been studied to detect
different types of attacks in a unified manner [4], [5].

Federated Learning (FL), also known as collaborative learn-
ing, is a machine learning technique that trains a machine
learning algorithm via multiple independent sessions, each
using its own dataset, presenting several advantages and novel
research issues [6]. This approach contrasts with traditional
centralized machine learning techniques where local datasets
are merged into one training session, as well as with ap-
proaches that assume that local data samples are statistically
identical. Thus it is useful in connected but distinct environ-
ments when multiple entities such as autonomous vehicles or
different types of IoT devices concurrently operate [7], [8],
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as well as when heterogeneous active objects collaborate in a
partially common physical and data driven environment [9].

In the case of IDS, different but related environments may
experience partially distinct and partially similar types of at-
tacks, at different traffic rates and different attack frequencies.
Also, the types of attacks and frequency of attacks experienced
by a given entity (e.g. a particular service system) may be
closely connected to its own commercial activities, or even
its level of profitability and economic efficiency, which that
particular system may not wish to share with other systems
for competitive reasons. In such cases a “concurrent” yet
“federated” type of learning about the design of an appropriate
IDS may be very valuable to all systems, provided they do not
directly access each other’s data.

In recent work G-Networks [10], which are a generaliza-
tion of the Random Neural Network [11] and of “queueing
networks with negative and positive customers”, have been
successfully used for cyberattack detection and IDS [12] with
deep learning. Furthermore, in [13] it was shown that appro-
priately designed auto-associative G-Network models can very
accurately detect multiple types of attacks simultaneously with
training that is only based on “benign” traffic. Thus, in this
paper we extend this approach using G-Networks for attack
detection to Federated Learning where the mix of multiple
attacks may vary between distinct sites that share their learning
experience but do not share their private data.

A. Related Work on Federated Learning and IDS

FL-based IDS is typically centralized or decentralized FL.
The former collects updates of the learning algorithm in a cen-
tral server so as to build a global model, while in decentralized
FL, training is performed locally by each separate concurrent
training site and the updated algorithms are then transferred
among the separate sites.

1) Centralized Federated Learning: In [14] a centralized
federated architecture is developed to detect malware using
the Generative Adversarial Network (GAN) for the industrial
Internet of Things (IoT). Although this architecture achieves
high accuracy in detecting attacks, it assumes that a validation
set is available at the server, which may partially violate
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privacy of the user data. In [15] a multi-step Distributed
Denial of Service (DDoS) attack prediction method that uses
Hidden Markov Model within a centralized FL architecture
using Reinforcement Learning is presented and tested against
a global algorithm, while in [16] a multi-class classifier for
FL-based IDS considers multiple data distributions, and in
[17], a self-learning distributed approach is developed to detect
IoT devices compromised by Mirai malware. Similarly, [18]
presents an anomaly detection approach based on centralized
FL to classify and identify attacks in IoT networks, and has
tested it on a dataset consisting of Man-in-the-Middle (MitM)
and flood attacks. In [19], an architecture was proposed to
mitigate DDoS in industrial IoT networks offering reduced
mitigation delay.

2) Decentralized Federated Learning: In order to defend
only against gradient attacks, Reference [20] proposed a
decentralized FL framework, which is based on a peer-to-peer
network for sending, aggregating, and updating local models.
Another study [21] used decentralized FL to detect anomalies
in network traffic generated by IoT devices, when all federated
IDSs are shared with each distinct participant to obtain a
weighted average, while in [22] blockchain-based FL was used
as a decentralized architecture to specifically detect poisoning
attacks.

B. Contributions of This Paper

In this paper, we propose a novel Decentralized Online
Federated Learning Intrusion Detection (DOF-ID) architecture
for improved online learning of ML-based IDS, that uses the
Deep Random Neural Network [23]. The DOF-ID architecture
hosts many IoT or IP node,s each of which utilizes an
instance of a common IDS, learns directly from its local data,
and collaborates with other nodes to incorporate their up-to-
date knowledge into its IDS. This architecture improves the
overall security of all collaborating nodes with online learning
between nodes, by taking advantage of the experience of each
node, while preserving the confidentiality of the local data at
each of these nodes.

The DOF-ID architecture uses a learning procedure that
combines Local Learning, and Decentralized Federated Up-
dates (DFU) with concurrent parameter updates taking place
on the collaborating nodes with local data. Therefore the pro-
posed DOF-ID architecture with the DFU algorithm contrasts
sharply with recent work on federated learning IDS.

We then evaluate the performance of the DOF-ID architec-
ture and compare it with the performance of four benchmark
methods, on three different types of cyberattacks obtained
from two well-known public datasets: Kitsune [24], [25] and
Bot-IoT [26].

The results show that DOF-ID provides significant perfor-
mance gains compared to learning from local data alone and
outperforms other state-of-the-art federated learning methods.

The remainder of this paper is organized as follows: Sec-
tion II presents the novel DOF-ID architecture with DRNN-
based IDS (Section II-A), local learning algorithm (Sec-
tion II-B), and the DFU algorithm (Section II-C). Section III

evaluates the performance of the proposed DOF-ID architec-
ture on public datasets. Section IV summarizes the paper and
presents some insights towards future work.

II. INTRUSION DETECTION WITH DECENTRALIZED AND
ONLINE FEDERATED LEARNING

In order to improve the performance of an ML-based IDS,
we now present a novel Decentralized and Online Federated
Learning Intrusion Detection Intrusion Detection (DOF-ID)
architecture, which is based on the collaboration of N nodes
(denoted by set N ) using separate local instances of the
same IDS. Figure 1 displays the proposed architecture from
the perspective of a particular node n, where the nodes are
represented as computer networks (e.g. Internet of Things
(IoT) networks). From the application perspective, one may
consider DOF-ID as a subscription based service, where each
subscriber (i.e. node) receives the updates of other subscribers
to improve its local security level.

As seen in Figure 1, each node n directly communicates
with other nodes in N (i.e. peers) to send locally learned
parameters of IDS and to receive those learned by other
nodes. That is, locally learned IDS parameters are Peer-to-Peer
(P2P) shared between every node in the DOF-ID architecture
distributing the knowledge over collaborating nodes in N to
improve their security (subsequently the global security) while
the confidentiality of local data in every node is assured.

The DOF-ID architecture operates over time windows each
with a length of T seconds, where time windows are con-
sidered to be synchronized among collaborating nodes. We
also assume that the first time window (denoted by l = 0)
starts with the use of DOF-ID architecture. Accordingly, at
the beginning of each time window l, each node n updates its
local IDS if no intrusion is detected in the previous window
l − 1. That is, if the intrusion decision of node n in window
l− 1, denoted by yl−1

n ∈ {0, 1}, equals zero, node n executes
the following steps as part of the learning procedure for the
current window l:

1) It learns from training data containing local benign net-
work traffic for windows up to beginning of l, denoted
by Dl

n, such that Dl
n = { k : ykn = 0, ∀k ∈

{1, . . . , l − 1} }. When the learning is completed, an
up-to-date locally trained IDS of node n, denoted by
I ln, is obtained to use for detection in window l.

2) It shares the parameters of I ln with other collaborating
nodes in N and receives the local updates of those
nodes, i.e. {I ln′}n′∈N\n. In this paper, it is assumed that
the P2P parameter exchange is instantaneous; however,
future work shall analyse the time, bandwidth and en-
ergy requirements of the proposed DOF-ID architecture
regarding P2P parameter exchange.

3) As the final step, node n updates the local IDS I ln
by merging its parameters with {I ln′}n′∈N\n via the
proposed DFU.

Following the training procedure in window l, each node n
estimates the intrusion probability yln through the following
steps:



 

Fig. 1. Schematic system representation of the Decentralized and Online Federated Learning Intrusion Detection (DOF-ID) architecture.

5) The inputs of the utilized IDS are considered to be
statistics calculated from the traffic of node n. Thus,
node n first calculates traffic statistics as a vector of
IDS inputs, denoted by xl

n, in time window l.
6) Using the up-to-date IDS I ln, the final intrusion decision

yln ≡ I ln(x
l
n) for traffic statistics xl

n is calculated.
In the rest of this section, we respectively present our

methodology for the particular ML-based IDS utilized in DOF-
ID architecture as well as the local and federated learning
algorithms.

A. IDS Utilized in the DOF-ID Architecture

Within our DOF-ID architecture, we use an IDS which
is the modified version of the one presented in [13] and
comprised of DRNN and Statistical Whisker-based Benign
Classifier (SWBC) as shown in Figure 2. At each window
l, this IDS estimates yln that indicates whether the traffic of
the considered node n in window l is malicious based on the
input vector of traffic statistics, xl

n.
1) Traffic Statistics: Let ptn denote the packet with length

|ptn| generated in node n at instantaneous time t, and let P l
n

be the set of all packets generated in n within time window l
whose length equals Tn:

P l
n = { ptn : (l − 1)Tn ≤ t < l Tn }. (1)

In each time window l, node n calculates three main
statistics that represent the overall density of the network
traffic as the average packet length in bytes (µl

n), the average

DRNN
auto-associative

memory

SWBC

Fig. 2. Structure of the IDS utilized in the DOF-ID architecture

number of packets per second (λl
n), and the average traffic in

bytes per second (ρln):

µl
n =

∑
p∈P l

n
|p|

|P l
n|

, λl
n =
|P l

n|
Tn

, ρln =

∑
p∈P l

n
|p|

Tn
. (2)

In order to use these statistics with DRNN, each element i
of xl

n = [µl
n, λ

l
n, ρ

l
n], denoted by xl

n,i, is normalized to have
values in [0, 1].

2) Deep Random Neural Network to Create Auto-
Associative Memory: In order to create an auto-associative
memory, we use the well-known lightweight deep learning
model DRNN [23], which is a Random Neural Network [11]
model with feed-forward and clustered structure. As a result of
its unique architecture presented in [23], each neuron at hidden
layers of DRNN utilizes the following activation function,



which is specific to this model:

Ψ(Λ) =
p (r + λ+) + λ− + Λ

2 [λ− + Λ]
(3)

−

√(p (r + λ+) + λ− + Λ

2 [λ− + Λ]

)2
− λ+

λ− + Λ
,

where Λ is the input of the given cluster, p is the probability
that any neuron received trigger transmits a trigger to some
other neuron, and λ+ and λ− are respectively the rates of
external Poisson flows of excitatory and inhibitory input spikes
to any neuron. On the other hand, the neurons at the output
layer of DRNN utilize linear activation functions.

As we consider three different network statistics, the DRNN
model that we use in this paper consists of H = 3 fully
connected layers with three neurons each. Accordingly, from
the input vector xl

n, DRNN estimates vector x̂l
n of the statistics

that are expected to be observed when the network traffic is
benign:

x̂l
(n,1) = Ψ([xl

n, 1]W
l
(n,1)) (4)

x̂l
(n,h) = Ψ([x̂(n,h−1), 1]W

l
(n,h)) ∀h ∈ {2, . . . ,H − 1}, (5)

x̂l
n = [x̂l

(n,h−1), 1]W
l
(n,H), (6)

where x̂l
(n,h) is the output of layer h, and x̂l

n is the final output
of DRNN for node n in window l. In addition, the term [xl

n, 1]
or [x̂l

n, 1] indicates that 1 is added to the input of each layer as
a multiplier of the bias, and W l

(n,h) is the connection weight
matrix between layers h− 1 and h of DRNN in I ln.

3) Statistical Whisker-based Benign Classifier: As the sec-
ond operation in I ln (IDS of node n in time window l) that
makes a decision on an intrusion, SWBC is used to measure
the significance of the difference between the actual statistics
measured from the network traffic and the expected statistics
estimated by DRNN. SWBC is originally proposed in [13] and
calculates the decision yln as follows:

ζln =
∑

i∈{1,2,3}

1(|xl
n,i − x̂l

n,i| > wl
n,i), (7)

yln = 1(ζln > θln), (8)

where xl
n,i is the i–th element of vector xl

n corresponding
the traffic statistic i, and {wl

n,i}i∈{1,2,3} and θln are the
only parameters of the decision maker which are computed
(learned) during training along with the connection weights
of DRNN.

B. Local Learning

We now present the methodology of the local learning
procedure that node n executes to learn parameters of I ln only
using local data. In this procedure, node n respectively learns
the DRNN weights and SWBC parameters for window l based
on the available data Dl

n.

1) Learning DRNN Weights: Using the local data of node
n, DRNN in I ln is trained to create an auto-associative memory
for the normal – benign – network traffic. To this end, first the
connection weights of each hidden layer h ∈ {1, . . . ,H − 1}
are calculated by minimizing a square cost with L1 regular-
ization via Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) with the following objective:

W l
(n,h) = argmin

{W :W≥ 0}

(
(9)∣∣∣∣∣∣[adj(Ψ(X̂ l

(n,h−1)WR )),1|Dl
n|]W − X̂ l

(n,h−1)

∣∣∣∣∣∣2
2

+ ||W ||1
)
,

where X̂ l
(n,h−1) is the matrix of x̂k

(n,h−1) collected for k ∈ Dl
n

for h ≥ 1, X̂ l
(n,0) = X l

n which is the matrix of xk
n collected

for k ∈ Dl
n, 1|Dl

n| is a column vector of ones with length
|Dl

n|, and WR is randomly generated (H × H) matrix with
elements in the range [0, 1]. In addition, adj(A) linearly maps
the elements of matrix A to the range [0, 1] then applies z-
score, and adds a positive constant to remove negativity.

For each layer h ∈ {1, . . . ,H−1}, after FISTA is executed,
we normalize each resulting weight matrix W l

(n,h):

W l
(n,h) ← 0.1

W l
(n,h)

maxk∈Dl
n

(
X̂k

(n,h))
. (10)

The connection weights of the output layer H are calculated
via an extreme learning machine as

W l
(n,H) = (X̂ l

(n,H−1))
+X l

n, (11)

where A+ denotes the pseudo-inverse of matrix A.
2) Computing SWBC Parameters: Using the training data,
Dl

n, which consists of only benign traffic features, we de-
termine the values of θln and wl

n,i for each statistic i. To
this end, for each i, the value of the absolute difference
zkn,i = |xk

n,i − x̂k
n,i| is computed for all k ∈ Dl

n.
Then, we compute the lower quartile QL

n,i and upper quartile
QU

n,i of {zkn,i}k∈Dl
n

. Using QL
n,i and QU

n,i, the upper whisker
wl

n,i is calculated as

wl
n,i = QU

n,i +
3

2
(QU

n,i −QL
n,i) ∀i ∈ {1, 2, 3} (12)

Since the training data contains only benign traffic, θln
must be selected to classify training samples as benign traffic.
Meanwhile, we should also consider that the training data may
include false negative samples. Therefore, we determine θln to
classify the majority but not all of the training samples as
benign traffic, and we set the value of θln to the mean of
ζln (i.e. the average number of abnormal statistics) plus two
standard deviations of ζln in Dl

n:

θln = meanDl
n
(ζln) + 2 stdDl

n
(ζln) (13)



C. Decentralized Federated Update
We now present the Decentralized Federated Update (DFU)

algorithm that is performed as the last step of our DOF-ID
architecture. In the DFU algorithm, the parameters of node n
are updated using the parameters of other nodes in DOF-ID,
whose data is unknown by node n. To this end, at each window
l in this algorithm, node n performs three main operations: 1)
select the set of concurring nodes, denoted by Cln that achieve
decisions similar to those of node n, 2) update the value of
each parameter segment in I ln using the corresponding segment
with closest value to that segment among all nodes in Cln, 3)
recalculate the output layer weights of DRNN via extreme
learning machine in order to fully adapt updated parameters
to the local network traffic.

1) Selecting a Set of Concurring Nodes: In the current
window l, node n first selects a set of nodes that concur with
it for most of its decisions regarding local data. In order to
select the concurring nodes, node n evaluate the performance
of each node m ∈ N \ n on the local data of node n over all
time windows up to current window l:

Cln = {m :
1

l

l∑
k=1

1
(
I lm(xk

n) = ykn
)
≥ Θ, ∀m ∈ N \ n}

(14)
2) Updating IDS Parameters: Using the IDSs of the con-

curring nodes, the parameters of I ln are updated separately for
each segment of the IDS (such as each DRNN layer, each
SWBC whisker, and the SWBC threshold) averaging with the
closest one for that segment among all the concurring nodes.

To this end, first, for each layer h ∈ {1, . . . ,H − 1} of
DRNN in I ln, the node m∗

h that has the closest connection
weights W l

(n,h) with node n in window l is obtained:

m∗
h = argmin

m∈Cl
n

(∣∣∣∣∣∣W l
(n,h) −W l

(m,h)

∣∣∣∣∣∣
1

)
. (15)

Then, the connection weights of this layer, W l
(n,h), are updated

as
W l

(n,h) ← cW l
(n,h) + (1− c)W l

(m∗
h,h)

, (16)

where 0.5 ≤ c ≤ 1 is a coefficient of weighted averaging that
prioritizes locally learned weights over federated weights.

Similarly, for each whisker wl
n,i of SWBC in I ln, the node

m∗
i with the whisker value wl

m∗
i ,i

closest to wl
n,i is obtained

among concurring nodes in window l:

m∗
i = argmin

m∈Cl
n

(∣∣∣wl
n,i − wl

m,i

∣∣∣), (17)

and each whisker wl
n,i of SWBC in I ln is updated:

wl
n,i ← cwl

n,i + (1− c)wl
m∗

i ,i
. (18)

The decision threshold θln is also updated as

θln ← c θln + (1− c) θlm∗
θ

(19)

for

m∗
θ = argmin

m∈Cl
n

(∣∣∣θln − θlm

∣∣∣). (20)

3) Adapting the Updated IDS to Local Network Traffic:
Finally, the output layer weights of DRNN in the IDS I ln are
updated to fully adapt I ln to local benign network traffic of
node n. To this end, (11) is repeated:

W l
(n,H) = (X̂ l

(n,H−1))
+X l

n. (21)

III. EXPERIMENTAL RESULTS

We now evaluate the performance of the proposed DOF-IDS
architecture. To this end, from two publicly available datasets
Kitsune [25] and Bot-IoT [26], we use three attack data each of
which corresponds to a single node in DOF-IDS architecture.
That is, we consider three collaborating nodes each of which is
an IoT network whose data is obtained from a public dataset.

We perform the experiments on a computer with 16 GB
of ram and M1 Pro 8-core 3.2 GHz processor. The perfor-
mance of DOF-IDS is also compared against four benchmark
methods.

A. IoT Traffic Datasets and Their Processing

As the first node in DOF-IDS architecture, we use “Mirai
Botnet” attack data from the Kitsune dataset [25], which is
the collection of 764, 137 individual traffic packets, which are
transmitted by 107 unique IP addresses within 7137 seconds
(approximately 2 hours).

As the second and third nodes in DOF-IDS, we use “DoS
HTTP” and “DDoS HTTP” attacks from Bot-IoT dataset
[26]. The DoS HTTP attack data contains 29, 762 packets
transmitted in 49 minutes, and the DDoS HTTP attack data
contains 19, 826 packets transmitted in 42 minutes. Since these
two types of attacks start this data with an attack traffic and the
presented system requires cold-start with only benign traffic,
we use each of these data by flipping it on the time axis.

During our experimental results in order to obtain approxi-
mately the same number of time windows from each dataset,
we set the values of Tn as follows: 23 for Mirai, 9 for
DoS HTTP, and 8 for DDoS HTTP. One should also note
that both datasets include a binary ground truth a(ptn) for
each packet ptn, which is determined by the providers, stating
whether the packet is a normal “benign” packet or “malicious”
corresponding to an ongoing attack. Accordingly, based on
the individual packet ground truths, we determine an overall
ground truth, denoted by gln, for each node n in each time
window l:

gln = 1

(∑
p∈P l

n
a(p)

|P l
n|

> 0.5

)
(22)

B. Benchmark Methods

1) No Federated: In this method, the contributions of the
other nodes are not considered in the learning of the IDS
parameters. This is the conventional training approach, which
is equivalent to the local learning procedure of our DOF-IDS
architecture.



2) Average over All Collaborating Nodes: The rest of the
benchmark methods are used in place of the DFU algorithm
to update the IDS parameters after local learning.

In this method called “Average”, the parameters of IDS in
node n (i.e. I ln) are updated as the average of all connection
weights over all collaborating nodes in the DOF-ID archi-
tecture. To this end, connection weights for each layer h of
DRNN in I ln are updated as

W l
(n,h) ←

1

N

∑
m∈N

W l
(m,h), (23)

Subsequently, SWBC parameters are also updated in the same
way:

wl
n,i ←

1

N

∑
m∈N

wl
m,i ∀i, and θln ←

1

N

∑
m∈N

θln (24)

One should note that the parameters updated using this method
become the same for all nodes. That is, at the end of this
method, I ln = I lm, ∀n,m ∈ N .

3) Average with Closest Node: In this method called “Av-
erage with Closest Node (ACN)”, the parameters of I ln are
updated by taking their average with the closest parameters
among all nodes in the DOF-ID architecture. To this end, first,
the node m∗ that has the closest parameters with node n at
time window l is obtained:

m∗ = argmin
m∈N\n

(
H∑

h=1

∣∣∣∣∣∣W l
(n,h) −W l

(m,h)

∣∣∣∣∣∣
1

(25)

+

3∑
i=1

∣∣∣wl
n,i − wl

m,i

∣∣∣+ ∣∣∣θln − θlm

∣∣∣)
Then, in time window l, the parameters I ln are updated taking
their average with the parameters of I lm∗ as

W l
(n,h) ←

W l
(n,h) +W l

(m∗,h)

2
, ∀h (26)

wl
n,i ←

wl
n,i + wl

m∗,i

2
, ∀i θln ←

θln + θlm∗

2

4) Average with Closest Node per Layer: In the last
benchmark method called “Average with Closest Node per
Layer (ACN-L)”, the parameters of I ln are updated for each
parameter segment of the IDS (such as a layer of DRNN, a
whisker of SWBC, and the threshold of SWBC) individually
taking the average with the same part of the closest node.

For each layer h of DRNN in I ln, the connection weights of
this layer are updated using (16) for a value of m∗

h calculated
using (15). Then, each whisker wl

n,i of SWBC in I ln is updated
(18) for a value of m∗

i calculated using (17). The decision
threshold θln is updated by subsequently using (20) and (19).

C. Performance Evaluation

We now present the performance evaluation results of our
DOF-ID architecture, where we set c = 0.75 and Θ = 0.65.
In addition, we used the DRNN model that has 10 neurons
in each cluster and has the following parameter settings: p =
0.05, r = 0.001, and λ+ = λ− = 0.1.

Figure 3 displays the average performance of DOF-ID with
respect to Accuracy, True Positive Rate (TPR), and True
Negative Rate (TNR). The results in this figure show that each
node (i.e. Mirai, DoS HTTP and DDoS HTTP) achieves above
0.86 detection performance with respect to all metrics. One
may also see that although the nodes suffer from some false
positive alarms (shown by the TNR metric), all nodes detect
local intrusions with a considerably high performance (shown
by the TPR metric).

Fig. 3. Performance of the DOF-ID architecture for each node among Mirai,
DoS HTTP, and DDoS HTTP with respect to Accuracy, TPR, and TNR

We also compare the performance of DOF-ID with bench-
mark methods in Figure 4. The results in Figure 4 (top)
show that the proposed method has the best accuracy among
all methods compared. Another important observation of this
figure is the poor performance of the averaging over all
collaborating nodes. This is an expected result as network
traffic across nodes varies considerably.

The evaluation results further show that FL-based methods
(i.e. DOF-ID, Average, ACN, and ACN-L) significantly im-
prove the detection performance measured by TPR in Figure 4
(middle), while they mostly tend to raise more false positive
alarms compared to local learning as shown in Figure 4
(bottom). On the other hand, the proposed DOF-ID method
appears to have a small decrease in TNR (i.e. a slight increase
in false alarms) but a significant improvement in the detection
rate, TPR.

Finally, we measure the training time of the proposed and
compared methods. We especially measure the time required
for federated update and present it in Table I since the local
learning time is the same (with negligible random deviations)
for all models, which equals 19.2 ms on average.

The federated update time measurements in Table I show
that the time spent by DOF-ID in addition to local learning is
about 30 ms for each node. This time is significantly larger
than other methods as its operations are more advanced and
detailed.

On the other hand, a method is considered to be acceptable
for a real-time application as long as the total operation time
spent on local and federated learning and detection is shorter
than the window length Tn. For the DOF-ID architecture, the
total operation time is 48.91 ms on average as the sum of local



Fig. 4. Performance comparison of DOF-ID with benchmark methods (No
Federated, Average, ACN, and ACN-L) with respect to accuracy (top), TPR
(middle), and TNR (bottom) presented as a box-plot across all nodes, namely
Mirai, DoS HTTP and DDoS HTTP

TABLE I
AVERAGE TIME SPENT IN MICROSECONDS (µs) BY EACH METHOD FOR

THE FEDERATED UPDATE IN A SINGLE WINDOW

Mirai DoS HTTP DDoS HTTP

DOF-ID 29.6× 103 29.7× 103 29.7× 103

Average 34.3 33.3 32.8

ACN 74.5 66.4 66.3

ACN-L 106.8 101.1 113.2

learning time of 19.2 ms, federated learning time of 29.6 ms,
and detection time of 0.11 ms.

IV. CONCLUSIONS

This paper proposed a novel Decentralized and Online
Federated Learning Intrusion Detection (DOF-ID) architecture

to improve the detection performance of anomaly-based IDS
using a DRNN model and SWBC decision maker, both of
which learn using only normal “benign” network traffic.
The presented DOF-ID architecture provides a collaborative
learning system that enables each node to learn from the
experiences of other collaborating nodes without violating data
confidentiality. In this way, DOF-ID improves both local and
global security levels of all collaborating nodes simultane-
ously, quickly and effectively eliminating the requirement for
a large learning data.

This paper also evaluates the performance of DOF-ID and
compares it against the benchmark methods using two public
well-known datasets, Kitsune and Bot-IoT. During the perfor-
mance evaluation, the impacts of FL on intrusion detection
performance are also investigated. Our experimental results
revealed that the proposed DOF-ID method significantly im-
proves the detection performance with a small increase in false
positive alarms compared to the same IDS structure learning
only from local traffic. In addition, the proposed method
has significantly superior performance (at least 15% accuracy
difference) over benchmark methods with higher computation
time.

Future work shall primarily expand the experimental setup
and evaluate the performance of the proposed DOF-ID archi-
tecture for large networked systems such as smart grids or
large IoT networks. It would also be interesting to address the
performance and security issues regarding the parameter ex-
change within the proposed DOF-ID architecture. Accordingly,
we shall analyse the time, bandwidth and energy requirements
of this architecture due to P2P parameter exchange and inves-
tigate the security breaches that may aim to leak or corrupt
IDS parameters during their transfer. Another important issue
that will have to be considered is that FL itself may come
under attack in a distributed system of systems [27], so that
this aspect will also require further research and attention.
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