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Abstract—The IoT’s vulnerability to network attacks has mo-
tivated the design of intrusion detection schemes (IDS) using
Machine Learning (ML), with a low computational cost for online
detection but intensive offline learning. Such IDS can have high
attack detection accuracy and are easily installed on servers
that communicate with IoT devices. However, they are seldom
evaluated in realistic operational conditions where IDS processing
may be held up by the system overload created by attacks. Thus
we first present an experimental study of UDP Flood Attacks on
a Local Area Network Test-Bed, where the first line of defence is
an accurate IDS using an Auto-Associative Dense Random Neural
Network. The experiments reveal that during severe attacks, the
packet and protocol management software overloads the multi-
core server, and paralyses IDS detection. We therefore propose
and experimentally evaluate an IDS design where decisions are
made from a very small number of incoming packets, so that
attacking traffic is dropped within milli-seconds after an attack
begins and the paralysing effect of congestion is avoided.

Index Terms—Internet of Things, Local Area Networks, Cyber-
security, UDP Flood Attacks, Intrusion Detection and Mitigation

I. INTRODUCTION

The risk of cyber threats, which may do considerable damage
to businesses, has increased with the growing dependence
on networked technologies. Denial of service (DoS) attacks,
which can disable a target system or network by flooding it
with a huge stream of requests, are among the most common
and destructive forms of cyberattacks which cause reputational
damage, and financial and productivity losses to organizations.
Thus the year 2022 saw a significant increase in Distributed
DoS (DDoS) attacks, with a jump of 150% worldwide [1], in-
dicating a higher number, complexity, volume, duration, power,
and frequency of such attacks. On average, organizations faced
29.3 attacks per day during Q4 2022, or 3.5 times higher than
in 2021, while the largest reported DDoS attack started in
September 2017, but was only disclosed in 2020. It targeted
Google, with spoofed packets sent to 180,000 web servers
which then responded to Google, attaining total bitrates of 2.54
Tera-bits per second [2].

However, DoS attacks also target the IoT and industrial
control systems, as well as vital infrastructure, such as power
grids and transportation systems [3], [4]. Among the different
types of DoS and DDoS attacks, SYN attacks [5] overwhelm
the victim by creating repeated requests for the opening of a

connection and overloading the victim’s processing capacity,
and its energy if it is battery operated, while Botnet attacks
can be devastating [6] since they spread by using victims as
attackers [7]–[9].

UDP Flood attacks [10] are simple and “popular” since they
readily overwhelm the target network with a large number
of forged-source address UDP packets, causing it to crash or
become unresponsive. Often launched with a small number of
compromised systems, they direct a high volume of traffic at the
targets, resulting in a denial of service for normal users. When
networks have limited capabilities such as sensor networks,
UDP Flood attacks cause delayed or lost data and inaccurate or
incomplete readings [11], and UDP’s connectionless behavior
[12] will cause even closed ports to respond by sending back
an ICMP message that creates overhead for the victim.

A. Aims of this Paper

While there is abundant literature on attack detection meth-
ods, most evaluations of these methods are conducted under
ideal conditions on a general purpose computer where the
attack traffic is treated as data. Such a setting cannot represent
the actual arrival process of attack traffic, the backlog that
forms in front of the attack detector after the traffic enters the
port that it is attacking, the possible effects of an avalanche
of attack traffic that causes the overflow of input buffers
and legitimate traffic to be dropped, or the effect of delayed
decisions concerning the packets that are malicious and those
which are legitimate.

As a consequence, in this paper, we use a practical cost-
effective test-bed for network attack detection evaluation,
which incorporates transmitting devices and a network port
placed at a server where traffic is received and attack detection
takes place. The purpose is to compare the “ideal” evaluation
results concerning attack detection algorithms, with the actual
overall system performance in a Local Area Network (LAN)
environment. In this context, we can measure the precision of
the IDS itself, but also its delay in providing decisions due to
congestion during a UDP Flood Attack. The test-bed allows us
to study remedial actions to drop attacking packets and protect
the bandwidth and buffer needs of benign traffic.

In this paper, we therefore use the LAN test-bed for evalu-
ating an attack detection technique by conducting a systematic
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study of the performance of a recent machine learning based
Intrusion Detection System (IDS) [13] that uses the Auto-
Associative Dense Random Neural Network (AA-DenseRNN).

The rest of the paper is organized as follows: Section
II reviews the recent related works. Section III describes
the experimental setup and devices used, and Section IV
presents the AADRNN-based attack detection algorithm and
its performance under ideal conditions compared to real-world
experiments. Section V presents the system’s behaviour when
exposed to UDP Flood attacks through different scenarios and
the improvements achieved by an attack mitigation algorithm.
Finally, Section VI concludes the paper and outlines directions
for future work.

II. RELATED WORK

Because it allows for the simulation of real-world network
conditions in controlled and reproducible environments, de-
veloping and using a reliable test-bed to evaluate DoS attack
detectors was recommended in early work [14], but was not
frequently used.

Several researchers have developed test-beds for cyber-
physical systems, industrial control systems (ICSs), and IoT
environments [15]. In [16], a semi-physical test-bed for ICSs
was proposed, while in [17], a low-cost Smart Grid test-bed for
SCIDS systems using Arduino microcontrollers, XBee radio
modules, Suricata and Snort intrusion detection and prevention
systems (IDPSs), Bonesi botnet simulator, and Winlog Lite was
evaluated for using TCP flood attacks. In [18], a real-time test-
bed for cyber-physical systems was implemented, whereas in
[19], the performance of an attack-resilient control system for
Automatic Generation Control (AGC) in power systems was
evaluated. In [20] the performance of an attack-resilient control
system for wind farm SCIDS systems (WFSS) was studied
using a test-bed with SYN flood attacks, and in [21]–[23],
SCADA systems are examined.

In other contexts, in [24], they proposed a test-bed using six
NetFlow tools for collecting, analyzing, and displaying data
with HTTP-GET flood attacks on a WAN network. In [25], the
impact of current datasets on IoT systems and developed a real-
time data collection platform for DNS amplification attacks in
IoT was investigated, and [26] addressed the problem of DoS
attacks on software-defined networks (SDN), and [27] con-
ducted experiments analyzing DoS attacks on an autonomous
vehicle test-bed.

The KDD99 dataset and its improved edition, NSL-KDD,
are widely used in network security research because of the
vast collection of network traffic records they include. They
are still frequently used as a benchmark dataset for evaluating
the effectiveness of DoS attack detection. However, one notable
shortcoming is that they were generated in a simulated envi-
ronment, which may not adequately reflect the complexities
and nuances of real network traffic. Many other examples of
datasets are used for the same purposes (e.g., UNSW-NB15,
CICDS2017, and Bot-IoT dataset) [25].
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Fig. 1. Testing Environment using Ethernet for communications, with Rasp-
berry Pi machines acting as forwarders of normal and attack traffic, and an
Intel 8-Core Processer used as a server to process incoming packet traffic and
detect attacks.

Recent work develops datasets that better reflect current
threats, so this paper uses the MHDDoS repository [28] that
performs real-world DoS attacks with 56 different modern
constantly updated methods.

III. EXPERIMENTAL SETUP

Practically all published work on cyberattack detection tech-
niques publish statistical results based on testing in a pure
software environment, which smooths over the realities of the
network and device hardware, or the side effects of attack traffic
on the receiver devices or network ports, such as the creation
of large queues of packets. Such ideal environments can obtain
purely statistical evaluations regarding the accuracy of the algo-
rithms being used, but cannot apprehend the huge processing
backlogs that such attacks often cause, which impede attack
detection from being carried out in a timely fashion which is
needed to take mitigating measures, and which also can cause
the loss and delay of legitimate traffic due to the large packet
backlogs.

Thus, in this work, we attempt to address these issues by es-
tablishing a physical test environment to evaluate LAN network
attack detector software and algorithms in more realistic con-
ditions. This environment, which can be expanded to include
an arbitrary number of linked devices with multiple sources
of traffic and attacks, presently consists of three scalable de-
vices. Two traffic-generating devices, one that transmits normal
benign IP packet traffic while the other sends a combination
of benign and malicious traffic. These devices are embodied
by two Raspberry Pi 4 Model B Rev 1.2 machines (RPi1
and RPi2) as transmitters. They each have a 1.5GHz ARM
Cortex-A72 quad-core processor and 2GB LPDDR4 − 3200
SDRAM and run the latest version of Raspbian GNU/Linux 11
(bullseye), a Debian-based operating system optimized for the
Raspberry Pi hardware. A server with an Intel Core i7−8705G
processor acts as the receiver of the packet traffic and is
responsible for detecting the attack and for storing the arriving
packets. It has 16GB of RAM and a 500GB hard drive. It runs
Linux 5.15.0−60− generic 66−Ubuntu SMP, an Ubuntu-based



operating system with eight cores, each running at 3.10GHz.
The traffic is carried over Ethernet connections between all
devices interconnected via a hub, as shown in Figure 1.

The specifications of the Raspberry Pi devices and the
computer were carefully chosen to ensure that the devices are
capable of effectively transmitting and receiving packets of data
through the Ethernet connection. These devices communicate
using the UDP protocol due to its simplicity and low over-
head. In contrast to TCP, UDP operates without establishing a
connection before transmitting data and without providing any
ACK or error recovery mechanisms and is a fast and efficient
protocol for real-time applications [29].

IV. THE IDS AND ITS IDEAL PERFORMANCE

For completeness, we first detail the Attack Detection Algo-
rithm used in this paper and its performance. It is a version
of the IDS developed in [13] based on the Deep Random
Neural Network (DRNN) [30] with Auto-Associative Learning
(AADRNN).
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Fig. 2. The structure of the IDS system that computes the decision variable
yi from the network traffic metrics [x1i , x

2
i , x

3
i ] with the DRNN based Auto-

Associative Random Neural Network (AADRNN) and the postprocessing
module.

Figure 2 shows how the AADRNN algorithm computes
the decision yi ∈ {0, 1} using three metrics calculated from
network traffic. To perform this operation, the attack detection
scheme is comprised of the AADRN followed by a postpro-
cessing module. The algorithm is an anomaly-based intrusion
detector, and only learns with normal traffic with measured
metrics xi = [x1i , x

2
i , x

3
i ] from successive sets of packets. The

AADRNN learns to predict the metrics that are expected to be
measured from traffic in the absence of an intrusion, namely
x̂i = [x̂1i , x̂

2
i , x̂

3
i ]. When a measurement xi is entered into

the AADRNN, it outputs the response x̂i, and the difference
between the input and the output is used to compute the
decision variable yi (attack or non-attack).

The AADRNN is built using the DRNN neuronal model
[30], an extension of the Random Neural Network [31], which
incorporates soma-to-soma triggering between neurons, as well
as the commonly used excitatory and inhibitory spikes. It uses
auto-associative learning as the attack detection technique in
[32], and provides accurate detection in significant test cases
[13], [33]–[35]. The DRNN is organized in l ∈ {1, . . . , L}

feed-forward layers, each comprised of Nl clusters, each cluster
having nl identical neurons. Weight matrices Wl connect the
clusters of layer l to those of layer l + 1, and the weights
are learned to create an auto-associative memory. For the input
vector xi, the forward pass of the AADRNN is:

x̂li = ζ([x̂l−1i , 1]Wl−1), 1 ≤ l ≤ L,
x̂i = x̂L−1i WL−1, (1)

where x̂li is the output of layer l for packet i, x̂0i = xi, and
[x̂li, 1] indicates that 1 is concatenated to the output of each
layer l as a multiplier of the bias, and ζ(λ) is the neuron
activation function [30]. If the nl is large we can simplify the
transfer function to:

ζ(λ) =
[r(1− p)− pλ+][1±

√
1− 4p(λ+λ−)[λ+−r−λ−λ−]

r(1−p)−pλ+ ]

2p(λ+ λ−)
,

(2)
where r is the total firing rate of each neuron, λ+ and λ−

are external excitatory and inhibitory spike rates arriving at the
given cell, and p is the probability that any other neuron in the
network fires when a given neuron fires, representing the soma-
to-soma interactions. In our experiments, we have set the values
of these parameters as follows: r = 0.001, λ+ = λ− = 0.1,
and p = 0.05.

The weights Wl between layers are only learned for nor-
mal or “benign” traffic using the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [36]:

Wl = (3)

argmin
{W :W≥ 0}

[ ||adj(ζ(X̂ train
l−1 WR))W − X̂ train

l−1 ||2L2
+ ||W ||L1

]

where X̂ train
l is the matrix of outputs of layer l resulting from

data from the training dataset Dtrain:

X̂ train
l = {x̂li}i∈Dtrain (4)

In the experiments reported in this paper, AADRNN learning
is carried out with a small dataset consisting of the first 500
packets received by the server. Thus the time until 500 packets
are received can be viewed as the “cold-start”, and we ensure
that only benign packets are received during this time. The
duration of the cold-start depends on the ongoing packet arrival
rate, varying between 25 seconds and as long as 9 minutes.

A. Traffic Metrics and Decision Making

We use traffic metrics from recent work [13] that aim to
capture the signatures of DDoS attacks, especially Mirai Botnet
attacks. In [34] these metrics were extended to identify several
different DoD and DDoS attacks, as well as Botnets, and it is
the latter approach that we use in this work. If ti is the instant
when packet i is transmitted and bi be its length in bytes. The
first metric is the total size of the last I packets observed by
IDS up to and including packet i, while the second one is the



average inter-transmission time of the last I packets observed
by IDS up to and including packet i:

x1i =

I−1∑
j=0

b(i−j), x
2
i =

1

I

I−1∑
j=0

[
t(i−j) − t(i−j−1)

]
. (5)

The third metric is the total number of packets transmitted in
the last T seconds up to the transmission of packet i:

x3i =
∣∣{j : (ti − T ) ≤ tj < ti}

∣∣. (6)

Each metric is normalized via min-max scaling using the
training dataset Dtrain as

xmi ← min
[ xmi −minj∈Dtrain x

m
j

maxj∈Dtrain x
m
j −minj∈Dtrain x

m
j

, 1
]

(7)

From the output x̂i of the AADRN with input xi, the binary
decision variable yi is obtained using the threshold 1 > γ > 0:

yi =

{
1, if 1

3

∑3
m=1

∣∣xmi − x̂mi ∣∣ ≥ γ
0, otherwise.

(8)

B. Real-Time Detection Performance of AADRNN

An experiment was run for a UDP Flood attack that lasts for
10 seconds and the IDS identified 2, 343 benign and 153, 657
malicious packets that were received over 17 minutes. The
resulting performance of AADRNN deployed on the LAN
test-bed is summarized in Figure 3, reporting the Accuracy,
TPR, and TNR for the experiment, which lasts approximately
17 minutes, where RPi2 starts a UDP Flood attack randomly,
which lasts for 10 seconds. The results show that AADRNN
achieves high performance both when a predefined value of
threshold γ = 0.3 is used in real-time testing and when the best
value of threshold γ = 0.3787 is used. The experimental results
show that AADRNN yields around 99.7% Accuracy and TPR,
while its TNR is 98.48%. Thus the ideal performance of IDS
under the best threshold selection is, as expected, only slightly
higher. The results were not significantly different when the
attack lasted 60 seconds between those for threshold γ = 0.3
compared to the best threshold value γ = 0.2176: Accuracy
and TPR were 99.89%, and TNR was of 96.31%. We also
observed that the AADRNN also raised an alarm just after the
attack traffic from the compromised device RPi2 stopped, as
shown in Figure 4.

V. SYSTEM BEHAVIOUR WITH NORMAL AND ATTACK
TRAFFIC

We now analyze the behaviour of the system operating within
the server in our experimental setup. As this system is shown
in Figure 5, the server receives the traffic packets from linked
devices on port 5555, which are then passed to the buffer
manager by a network protocol and queued to be analyzed
by the AADRNN-based IDS. Based on the decisions of IDS,
a batch of 10 packets is classified as normal or attack traffic.
The packets in this batch are classified as normal only if the
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Fig. 3. The performance of AADRNN with γ = 0.3, and compared with
the best value of γ = 0.3787, is evaluated with respect to Accuracy, TPR,
and TNR for the experiment where RPi2 starts a UDP Flood attack lasting 10
seconds
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Fig. 4. The AADRNN binary decisions using γ = 0.3 for the experiment
where RPi2 starts a UDP Flood attack, which lasts for 10 seconds

IDS detects the majority of them as normal traffic. Packets
classified as normal traffic are forwarded to the packet content
processor (representing the rest of the operations performed by
the server); otherwise, they are dropped. In this way, we aim
to ensure the security and accessibility of the server.

A. Traffic Generation

During normal operation, when there is no attack, each of
the RPi1 and RPi2 devices continuously generates normal IP
packet traffic containing the device’s CPU temperature and
transmits it to the server every 1 second using the UDP
protocol.

The attack traffic generator exploits the public repository
MHDDoS [28], which contains 56 methods for generating
different types of DoS attacks that can be directed toward the
transport and application layers of the OSI model. Using this
repository, the user may provide the type of attack, target IP ad-
dress, proxy, number of threads to use, attack duration, requests
pre-connection (RPC), and debug mode, configured to ensure
that the network bandwidth is flooded with a large number
of packets that delay or stop communication between devices.
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Fig. 5. Schematic system organization of the server that supports the IDS based
attack detection and mitigation capability. Mitigation is based on triggering
packet drop decisions for all packets that enter the IDS Input Buffer (in this
figure) as soon as the IDS has detected a majority of attack packets among
the most recent M packets. After the Input Buffer has emptied, the IDS will
resume its testing for incoming packets. In our experiments we have taken
M = 20.

We tested the script, and it showed effective performance in
generating aggressive, high-impact attack traffic.

During our experiments, RPi1 generates only normal traffic,
while the compromised device RPi2 generates both normal
and attack traffic via random sampling. In particular, every
1 second, it initiates a UDP Flood attack with a probability
of 0.10 or sends one normal traffic packet with a probability
of 0.90. As we perform two different experiments to analyze
the changes in the behaviour of the system, the during of the
initiated attack is first set to 10 seconds, then to 60 seconds.

B. Experiment I : The UDP Flood Attack Lasts 10 Seconds

In Figure 6, we display an example of a UDP Flood attack
effect on the server, where the RPi2 device starts targeting the
server with attack traffic at the 99th second to disrupt normal
traffic on the network. The figure shows that an intense flow
of attack packets arrive in 10 second interval with 1032 byte
packets, while under normal operating conditions flow rates are
on average of two small packets per second.

Fig. 6. The difference between the form of the normal and attack traffic on
the server when it is targeted by a UDP Flood attack.

To examine the UDP Flood effect on the server, we also
conducted several experiments by increasing the duration of
the attack in the subsequent experiments. Figure 7 shows the
resulting packet queue length at the server, and displays the
sharp rise in the number of packets waiting to be analyzed
(for attack detection) in front of the IDS, and also the gradual
decreases of the queue length once the attack ceases.
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Fig. 7. The top figure shows the queue length infront of the IDS in an attack
whose duration is10 seconds, and the vertical red dashed lines show the active
duration of the attack originating in the compromised device RPi2. The bottom
figure plots the packet delay before the packet is processed by the IDS.

C. Experiment II : The UDP Flood Attack Lasts 60 Seconds

Figure 8 shows the effect of the attack when it lasts for 60
seconds on the packet processing rate (y-axis in packets/sec)
of the server. We observe that the server is intermittently
paralyzed as the attack continues, so its processing rate drops
intermittently to zero.

From Figures 7 and 8, we see that although the attack
lasts only 10 seconds in the first experiment, it floods the
packet queue such that the IDS completes the analysis of
the accumulated packets over a very long 15 minute period,
and it can take some 5.85 hours when the attack lasts for
60 seconds as in the second experiment. When the duration
of the attack is increased to 60 seconds, the IDS becomes
intermittently “paralyzed” since the server’s four cores are all
committed to handling the incoming, and is unable to process
packets as shown in Figure 9. After observing the attacker’s
and server’s behavior, we concluded that these severe attack
symptoms occur if the attack itself lasts for 60 seconds, as
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Fig. 8. At the top, the effect of a 60 second UDP Flood attack on the IDS
traffic processing rate in packets per second, is shown when the attack duration
is 60 seconds. The corresponding packet queue length infront of the IDS is
shown at the bottom.

the server receives approximately 408, 500 packets of which
407, 796 are attack packets during this period. Thus in the
absence of any mitigation action as per the IDS’s decision,
the effect of the attack on the server can last much longer than
the activity of the attacker.
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Fig. 9. Packet delay after the packet has been processed by the IDS when the
attack duration is 60 seconds.

D. System Behaviour for Experiments I and II with Attack
Mitigation

We now present measurements of the system behaviour when
mitigation action is taken based on the decision of IDS. Recall
that in order to mitigate the impact of an attack, if the IDS
detects the majority (more than 10) of the 20 latest packets as
attacks, the input buffer is emptied and all incoming packets
within the next 30 second window are dropped. This is repeated
at the end of the 30 second window.

Figure 10 displays the queue length in the input buffer
when the attack mitigation is performed against the UDP Flood
attack, which lasts 10 seconds. It is seen that the queue length
increases until the IDS processes 20 packets and decides to
empty the buffer; the mitigation decision is made just after the
attack starts and IDS then waits for a predefined period (in this
case 30 seconds) and we observe that the 10 second long attack
is mitigated successfully.
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Fig. 10. During the 10 second attack, the decision to drop packets results in
subsequent very short packet queue length, avoiding server and IDS paralysis.

Figure 11 displays the queue length when the attack lasting
60 seconds is mitigated: the buffer length increases up to 22
packets, which is small compared to the results without mitiga-
tion in Figure 8. During the attack, the mitigation decision was
taken twice, and the IDS was not paralyzed. Another mitigation
decision occurs between 162 and 192 seconds after an IDS
detection event.

VI. CONCLUSIONS

IDS are very useful to detect and evaluate network attacks,
but are often evaluated under ideal off-line conditions, when
the effect of the attack itself is not felt on the server which is
used to evaluate the accuracy or quality of an IDS.

Thus in this paper we have installed an AADRNN based
IDS on a server which receives traffic via Ethernet from
devices in a LAN network test-bed. Realistic UDP Flood attack
packets have been installed one one of the network devices, and
experiments were run where the Flood attack was directed at
the server. During a short 10 second attack, it was observed
that the IDS was able to accurately detect the attack, but that
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Fig. 11. The figure shows that during the attack’s 60 seconds, mitigation
decision occurs twice. Another mitigation decision following detection between
162 and 192 seconds.

long packet queues accumulated at the server. During longer 60
second attacks we observed that the IDS soon became unable
to carry out attack detection because of the congestion, while
the server became intermittently paralyzed due to the server’s
overload caused by the attack.

This led us to design a fast mitigation technique, which
takes a decision very rapidly based on a small number of 20
successive packets. If an attack is detected then all incoming
packets are dropped. The traffic is allowed to re-enter the
serever’s port after some time, and the IDS again takes a
mitigation decision based on the first 20 consecutive packets
and the procedure is repeated. We saw that this approach
avoided UDP Flood attack based congestion at the server and
also allowed the IDS to operate effectively.

In addition to experimentally showing that the installation
of an IDS at a server is not sufficient to protect it against the
consequences of an attack, and that a highly accurate IDS is
by itself no guarantee that an attack will be inneffective, this
work shows the value of evaluating an IDS in the context of a
real test-bed.

Future work will study optimum mitigation policies that ex-
amine several mutually dependent aspects, such as the amount
and duration of traffic that needs to be blocked or dropped
when an attack is first detected, the frequency with which the
IDS should sample and analyze the incoming traffic, and the
manner in which blocking and loss of valid (benign) traffic
can be minimized when attacking traffic is being blocked or
dropped.

REFERENCES

[1] S. Staff, “Organizations fought an average of
29.3 attacks daily in late 2022,” Feb 2023.
[Online]. Available: https://www.securitymagazine.com/articles/
98958-organizations-fought-an-average-of-293-attacks-daily-in-late-2022

[2] Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/
ddos/famous-ddos-attacks/

[3] L. Rajesh and P. Satyanarayana, “Detecting flooding attacks in commu-
nication protocol of industrial control systems,” International Journal of
Advanced Computer Science and Applications, vol. 11, no. 1, pp. 396–
401, 2020.

[4] Y. Al-Hadhrami and F. K. Hussain, “Ddos attacks in iot networks: a
comprehensive systematic literature review,” World Wide Web, vol. 24,
no. 3, pp. 971–1001, 2021.

[5] S. Evmorfos, et al, “Neural network architectures for the detection of
SYN flood attacks in IoT systems,” in Proceedings of the 13th ACM
International Conference on PErvasive Technologies Related to Assistive
Environments, 2020, pp. 1–4.

[6] N. Statt, “How an army of vulnerable gadgets took down the web today,”
October 2016. [Online]. Available: https://www.theverge.com/2016/10/
21/13362354/dyn-dns-ddos-attack-cause-outage-status-explained

[7] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli, and Y. Liu, “The impact of
DoS attacks on resource-constrained IoT Devices: A study on the Mirai
attack,” arXiv preprint arXiv:2104.09041, 2021.
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