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⊥ } basis measurement to obtain a
classical label j∈{ 0,1} , and when (i,j)=(0,0) accepting as an
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QUANTUM PROBABILISTIC ERROR
CORRECTION METHOD

The present invention relates to a quantum computer
implemented probabilistic error correction method for use in
quantum circuits. Invention finds its application in quantum
information systems in particular in a quantum communi-
cation channels.

In the prior art a number of quantum error correction
technics is known.

Perfect reconstruction codes. In the publication of Knill
Emanuel, Raymond Laflamme, and Lorenza Viola, “Theory
of quantum error correction for general noise” Physical
Review Letters 84.11 (2000): 2525. A general description of
arbitrary system-environment couplings in terms of a graded
interaction algebra is disclosed. The degree of an operator in
this algebra both determines the temporal order and the
extent to which the operator can affect the system, indepen-
dent of the internal evolution of the environment. In the case
of qubits with independent one-qubit interactions, this
notion coincides with the usual concepts of “number of
errors” or “error weight” used in combinatorial error analy-
sis. It is disclosed that the generalization of minimum
distance relates to error correction in the usual way and show
that, irrespective of the nature of the environmental noise,
large codes exist depending solely on the dimension of the
linear space of errors of a given order. This publication
discloses an error correction code that requires at least four
qubits to work. The proof exists that in order work with
probability of success equal to one and to recover informa-
tion form the channel affected by the noise of Choi rank not
greater than two, it needs to use more than two qubits.

Approximate error correction codes. The publication
Berta Mario, et al. “Semidefinite programming hierarchies
for constrained bilinear optimization.” Mathematical Pro-
gramming (2021): 1-49, discloses asymptotically converg-
ing semidefinite programming hierarchies of outer bounds
on bilinear programs of the form Tr[H(D^E)] maximized
with respect to semidefinite constraints on D and E. Such
hierarchies when applied to the problem of approximate
error correction in quantum information theory, give hier-
archies of efficiently computable outer bounds on the suc-
cess probability of approximate quantum error correction
codes in any dimension. The approximate error correction
codes by design return approximate encoded state and they
do not allow for perfect recovery of the initial state.

Probabilistic error correction codes. In the publication
Mackay David J C, Graeme Mitchison, and Paul L. McFad-
den. “Sparse-graph codes for quantum error correction.”
IEEE Transactions on Information Theory 50.10 (2004):
2315-2330 the authors explored the conjecture that the best
quantum error-correcting codes will be closely related to the
best classical codes. By converting classical low-density
parity-check codes into quantum codes, the authors hope to
find families of excellent quantum codes. The approach
relies on further conjecture claiming that practical decoding
algorithms have been found for classical low-density parity-
check codes, it seems likely that a practical decoding algo-
rithm will also exist for quantum low-density parity-check
codes. It also discloses the stabilizer formalism for describ-
ing quantum error-correcting codes that encode a quantum
state of K qubits in N qubits, and explains how a general
stabilizer code is related to a classical binary code.

In the publication Koashi Masato, and Masahito Ueda
“Reversing measurement and probabilistic quantum error
correction.” Physical review letters 82.12 (1999): 2598, a
general characterization of probabilistically reversible mea-

surements is presented. Further it is proposed that such
probabilistic reversal serves as a means of error correction in
quantum computation, which would be particularly useful
when the numbers of qubits and gate operations are limited.

The publication Fern, Jesse, and John Terilla “Probabi-
listic quantum error correction.” arXiv preprint quant-ph/
0209058 (2002), examines, within the context of stabilizer
codes, the conditions under which a code may correct errors
on more qubits than it is guaranteed to fix and gives a
framework in which to compute the probabilities that an
arbitrary error will be corrected. During the course of
quantum error correction, an error syndrome is measured
and the correction procedure continues dependent on this
measurement. As a second application of probabilistic error
correction, the likelihood that error correction will succeed
given that a particular syndrome is measured is analyzed.
This likelihood, is called the syndrome quality, may enhance
the effectiveness of a quantum information process for
which quantum error correction plays a role. For example, it
is conceivable that a quantum information process may
benefit from aborting a subroutine if at some point a syn-
drome of especially low quality is measured.

In the publication Delfosse, Nicolas, Ben W. Reichardt,
and Krysta M. Svore “Beyond single-shot fault-tolerant
quantum error correction.” IEEE Transactions on Informa-
tion Theory (2021), in this publication, it is demonstrated
that fault-tolerant quantum error correction can be achieved
using O(d log(d)) measurements for any code with distance
d≥Ω(nα) for some constant α 0. Moreover, we prove the
existence of a sub-single-shot fault-tolerant quantum error
correction scheme using fewer than r measurements. In
some cases, the number of parity check measurements
required for fault-tolerant quantum error correction is expo-
nentially smaller than the number of parity checks defining
the code.

Probabilistic codes are known as it is described above,
however it is important to notice that these are mostly codes
with stabilizers operating on a mesh of nine qubits in the
Pauli basis. The noise models of known probabilistic codes
do not allow for correction of all errors of Choi rank at most
two.

The present invention provides a probabilistic quantum
error correction code that encodes one qubit of information,
operates on two data qubits, corrects errors generated by
noise channel of Choi rank not greater than two. Further the
present invention provides an error correction procedure that
has a positive probability that it will succeed, and in such a
case, the procedure returns classical information indication
showing its status. If the error correction procedure succeeds
it perfectly recovers the initial state. This set of advanta-
geous features is not known to exists in any of the know
quantum error correction methods.

Further the present invention relates to an encoder and
decoder that operate according to a probabilistic quantum
error correction code.

Present invention has been presented below in a preferred
embodiment in reference to drawings, where

FIG. 1 shows a schematic quantum circuit implementing
an invention.

Quantum computing systems incorporate a classical part
of the system and a quantum part of the system. The classical
part of the quantum system is responsible for setting up a
quantum circuit and processing the output of the quantum
circuit, while the quantum part of the system is responsible
for running the quantum computation process. Both parts of
the quantum computing system cannot be separated as the
uncontrolled quantum circuit without a classic setup process
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would produce no meaningful results and classic part of the

quantum computing system—without a quantum circuit—is

not able to benefit from quantum effects present only in the

quantum circuit. Technical effects observed in the quantum

system can be classified as direct technical effects involving

interaction between qubits, and further technical effects as

seen from the perspective of a quantum communication

system end expressing themselves in correction of errors and

improved more reliable quantum communication system.

The language of the following disclosure is a quantum

computing language and it is assumed the reader is familiar

with mathematical notation involved in this field of tech-

nology, in particular with complex numbers, matrix linear

algebra in Hilbert spaces, the notation of orthogonal

vectors ?·⊥ , transposition T, and conjugate transposition †.

In the FIG. 1 a scheme representing QEC (Quantum Error

Correction) procedure is shown, it is a quantum part of the

quantum communication scheme. In the classic part the

quantum error scheme requires preparation of unitary matri-

ces UE, UD and VD. At the beginning of the procedure one

has access to two data qubits. The first one is in a state

?ψ . This qubit will be encoded with an information. The

second qubit is put into a ground state ?0 . In the description

we use the second qubit in a ground state ?0 however the

second qubit can be put into any arbitrary fixed state

?d1 without departing from the scope of the invention. In

the next step the initial state of both qubits goes under

two-qubit unitary operation UE, this means a rotation of a

state vector in a four dimensional Hilbert space.

Then the encoded state UE(?ψ ^?0 ) is affected by the

noise N. This procedure works with quantum circuits with a

noise channel N(X) that has a Choi rank not greater than

two, such as N(X)=N0XN0
†+N1XN1

†. This error noise can-

not be corrected by any known probabilistic nor perfect

QEC codes acting on two qubits only.

After that, we start the decoding procedure by implement-

ing two-qubit unitary operation UD which is unitary rotation

of an error affected vector state in a four dimensional Hilbert

space. The next step of the procedure is measuring the

second qubit in the standard basis to obtain a classical label

i∈{ 0,1} . In the description we use a measurement of the
second qubit in a standard basis, however the measurement
of the second qubit can be done by a projective measurement
in arbitrary basis { ?d2 , ?d2

⊥ } , without departing from the
scope of the invention.

The next step of the procedure is preparing a third qubit
in the ground state ?0 . The same as in the case of the second
qubit, in the description we use the third qubit in a ground
state ?0 however the third qubit can be put into any
arbitrary fixed state ?d3 , without departing from the scope
of the invention.

Having such a circuit the next step of the procedure is to
implement two qubit unitary operation VD on the first qubit
and the third qubit, followed by measuring the third qubit in
the standard basis to obtain a classical label j∈{ 0,1} . The
same as in the case of the second qubit in the description we
use a measurement of the third qubit in a standard basis,
however the measurement of the third qubit can be done by
a projective measurement in arbitrary basis { ?d4 , ?d4

⊥ }
without departing from the scope of the invention.

In the final step the procedure is conditioned by the
classical labels i,j and when (i,j)=(0,0) accepting as an
output δexp a decoded state of the first qubit, and when
(i,j)≠(0,0) rejecting the output δexp of a decoded state of the
first qubit.

Preferably when the output δexp is rejected the method
further comprising a step of initiating an automatic resend
request for the encoded state ?ψ on the first qubit.

The encoding scheme according to the invention is
described in detail below starting with the N to be a
two-qubit noise channel, such that its Choi rank is no greater
than two. Having this assumption a probabilistic quantum
error correction code for noise N is proposed, which in the
classical part of the procedure defines unitary matrices UE,
UD, and VD.

The noise N can be written in the Kraus representation as

N(X)=N0XN0
†+N1XN1

†.

A four by two encoding matrix E can be found such that
E†E= 2. Further a two by four decoding matrix D can be
found, such that \D\∞≤1 for which

DN0E∝ 2,

DN1E∝ 2,

DN0E≠0~DN1E≠0.

The matrices E, D create a valid error correction scheme
(E,D) for noise N as

D(N(EXE†))D†=pX.

For some p∈ (0,1] and any two by two matrix X.
The matrix UE is the four by four unitary matrix that

satisfies

UE( 2^?0 )=E.

The matrix UD is the four by four unitary matrix that
satisfies

UD?t1 =?0,0 ,

UD?t2 =?1,0 ,

for singular value decomposition of D=σ1?z1 <t1?+
σ2?z2 <t2?.

For the matrix D'=DUD
†( 2^?0 ), one can define the

matrix VD which satisfies

( 2^<0?)VD( 2^?0 )=D'.

Having defined unitary operations UE, UD and VD one can
run the quantum part of the procedure as described in
relation to FIG. 1 for initial state ?ψ . Then having the
output state δexp of the procedure from FIG. 1 in the post
processing of the measurements outputs (i,j), when (i,j)=(0,
0) then the output δexp is accepted and δexp=?ψ <ψ?, and
when (i,j)≠(0,0) the output δexp is rejected.

In the preferable embodiment of the invention matrices E
and D are constructed as described in detail below.

In the first step calculate the singular decomposition of
N0, and N1 in the form of

N0=U0λ0V,

N1=U1λ1V,

where U0, U1, V are unitary matrices, and λ0, λ1 are
diagonal, positive semidefinite matrices.

Define Ancillary Vectors

?xi =(λ0)iiU0?i ,i=0, . . . ,3,

?yi =(λ1)iiU1?i ,i=0, . . . ,3,

Define vectors ?E0 , ?E1 , ?D0 , ?D1 ∈ 4 according to
the construction, which depends on one of the following
cases:

First case: There exists i3 ∈{ 0, . . . , 3} such that vectors
?xi3

, ?yi3
are linearly independent.
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Define indices i0, i1, i2∈{ 0, . . . , 3} , such that { i0, . . . ,
i3} covers the whole set { 0, . . . ,3} . Let (a0, a1, a2)T∈ 3 be
a normed vector orthogonal to vectors (<yi3

?xi0
, <yi3

?xi1
,

<yi3
?xi2

)† and (<xi3
?yi0

, <xi3
?yi1

, <xi3
?yi2

)†. Orthogonal-
ization can obtained by the use of the Gram-Schmidt
orthogonalization method. Take ?E1 =?i3 and ?E0 =
a0?i0 +a1?i1 +a2?i2 .

Define ?x =a0?xi0
+a1?xi1

+a2?xi2
and ?y =a0?yi0

+
a1?yi1

+a2?yi2
. If ?x ≠0 take ?D0 =?x , else take ?D0 =?y .

Define

(b0, b1)
T =

�xi3 �xi3 � �yi3 �xi3 �

�xi3 �yi3 � �yi3 �yi3 �

-1

(〈D0 x〉, 〈D0 y〉)T .

Take ?D1 =b0?xi3
+b1?yi3

.
Second case: There exists a pair of vectors ?yi0

, ?yi1
for

i0≠i1, such that ?yi0
=?yi1

=0.
Define ?E =?i0 , ?E1 =?i1 , ?D0 =?xi0

and ?D1 =?xi1
.

Third case: For all i∈{ 0, . . . ,3} vectors ?xi , ?yi are not
linearly independent and there is at most one zero
vector ?yi3

for some i3∈{ 0, . . . , 3} .
Define indices i0, i1, i2∈{ 0, . . . ,3} , such that { i0, . . . , i3}

covers the whole set { 0, . . . ,3} .
Define the matrix

M =
yi0 xi0  yi1 xi1  yi2 xi2 

yi0 yi0  yi1 yi1  yi2 yi2 
.

Subcase a) Rank(M)=1

Define b =
yi1 yi1 

yi0 yi0 
.

Define E0〉 = io〉, E1〉 = i1〉, D0〉 = yi0 〉 and D1〉 =
1

b
yi1 〉.

Subcase b) Rank(M)=2
Define indices j1, j2∈{ 0, 1, 2} such that

rank

M0 j1 M0 j2
M1 j1 M1 j2

= 2.

Define j0∈{ 0, 1, 2} , as the remaining label, such that { j0,
j1, j2} covers the whole set { 0, 1, 2} . Take ?E0 =?ijo

,

D0〉 = yi j0 �.

Define

(b1, b2)
T =

yi j1 xi j1  yi j2 xi j2 

yi j1 yi j1  yi j2 yi j2 

-1

yi j0 xi j0 , yi j0 yi j0 
T .

Take ?E1 =?ij1
+?ij2

and ?D1 =b1?yij1
+b2?yij2

.
Having the vectors ?E0 , ?E1 , ?D0 , ?D1 ∈ 4 con-

structed, define
a four by two matrix E*=V†(?E0 <0?+?E1 <1?),
and a two by four matrix D*=?0 <D0?+?1 <D1?.

Define

E = E*E*
†E*

-05

D =
E*

†E*
05
D*

�E*†E*
05
D*��

The matrices E and D allow to create unitary matrices UE,

UD, VD according to the invention as it was described above.

To implement the error correction procedure according to

the invention it is necessary to implement two qubit unitary

matrix, ground state preparation and standard basis one

qubit measurement. This can be implemented in a standard

architecture provided by IonQ. Architecture provided by

IonQ offers ground state ?0 preparation, Z-basis measure-

ment (measurement in Z axis of Pauli basis), and one qubit

unitary gates, native gates

GPI(ϕ) =  0 e��(�i	)
e��(i	) 0

,

GPI2(ϕ) = 1

2

 1 -i 
��(-iϕ)
-i 
��(iϕ) l

,

A Virtual Gate

GZ(θ) =

��

-iθ

2
0

0 
��
iθ

2

,

and

a Two-Qubit Native Mølmer-Sørenson Gate

MS(0.25π)=exp(−0.25πi×σx^σx).

By using a composition of gates GPI(0)GPI(φ)GPI2(0) it
is possible to implement arbitrary rotation along Y-axis (in
a Pauli basis). It is also possible to implement CNOT gate as
it is shown in shown in technical documentation and
examples at https://quantumai.google/cirq/tutorials/educa-
tors/ion_device. Therefore, the offered gates constitute uni-
versal set of quantum gates (see Eq. 5-7 in https://arxiv.org/
pdf/2101.02993.pdf), especially this set is sufficient to
implement any two-qubit unitary gate (see FIG. 5 in https://
arxiv.org/pdf/2101.02993.pdf).

In the preferred embodiment the present invention was
applied to the following noise channel

N(X ) = N0XN0† + N1XN1† where N0 =

diag 1, 0,
1

2
,
1

2
and N1 = diag 0, 1,

1

2
,
1

2
i .

We have that N0=U0λ0V and N1=U1λ1V for

V =

U0 =

U1 = diag( , i),
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-continued
λ0 = N0 ,

λ1 = diag ,
1

2
,
1

2
.

We have that

x0〉, x1〉, x2〉, x3〉 = 0〉, 0,
1

2
2〉,

1

2
3〉,

y0〉, y1〉, y2〉, y3〉 = 0, 1〉,
1

2
2〉,

1

2
i3〉.

This is in the third case of the creation of E, D matrices,
with (i3=0, i0=1, i1=2, i2=3) hence the matrix M is as follows

M = �
0 0.5 -0.5i

1 0.5 0.5
.

It is a subcase b) as rank(M)=2.

We take

j1 = 0, j2 = 2. Define E0〉 = 3〉, D0〉 = y3〉 = 1

2
i3〉.

Now we calculate

(b1, b2)T = �
0 0.5

1 0.5
-1��0.5i, 0.5)T = (0.5 + 0.5i, -i)T .

Define E1〉 = 1〉 + 2〉 and D1〉 = (0.5 - 0.5i)1〉 + 1

2
i2〉

Take

E* =
0 0

0 1

0 1

1 0

,

D* =
0 0 0 -

1

2
i

0 0.5 + 0.5i -
1

2
i 0

.

Take

E =

0 0

0
1

2

0
1

2

1 0

D =
0 0 0 -0.5i

0 0.5 + 0.5i -
1

2
i 0

.

The probability of successful error correction is equal to
p=0.25 and the unitary matrices are as follows

UE =

0 0 0 1

0
1

2

1

2
0

0 -
1

2

1

2
0

1 0 0 0

,

UD =

0 0 0 1

0 -
1

2
i 0.5 - 0.5i 0

0 0.5 + 0.5i -
1

2
i 0

1 0 0 0

,

VD =
-0.5i 0.5 3 0 0

0.5 3 -0.5i 0 0

0 0 1 0

0 0 0 1

.

Below it is described how to implement the encoder and
decoder according to the invention.

A quantum computer implemented encoder for a proba-
bilistic error correction method for use with quantum cir-
cuits with a noise channel N(X) that has a Choi rank not
greater than two, such as

N(X)=N0XN0
†+N1XN1

†

and the encoder comprises an encoding module adapted to
encode a first qubit into an encoded state ?ψ , and put
a second qubit into a ground state ?0 . This encoding
module may be embodied in a standard architecture
provided by IonQ. Architecture provided by IonQ
offers ground state ?0 preparation and an encoded
state ?ψ preparation.

As it was indicated earlier by using a composition of gates
GPI(0)GPI(φ)GPI2(0) it is possible to implement arbitrary
rotation along Y-axis (in a Pauli basis). It is also possible to
implement CNOT gate as it is shown in shown in technical
documentation and at examples https://quantumai.google/
cirq/tutorials/educators/ion_device. Therefore, the offered
gates constitute universal set of quantum gates (see Eq. 5-7
in https://arxiv.org/pdf/2101.02993.pdf), especially this set
is sufficient to implement any two-qubit unitary gate (see
FIG. 5 in https://arxiv.org/pdf/2101.02993.pdf). Hence using
the universal set of gates it is possible to achieve an encoder
adapted to implement two qubit unitary operation UE on the
first qubit and the second qubit to obtain an encoded state UE

(?ψ ^?0 ), such as

UE( 2^?0 )=E

while E is an encoding matrix, and D is a decoding matrix
such as

DN0E∝ 2,

DN1E∝ 2,

DN0E≠0~DN1E≠0.

The encoder according to the invention is preferably also
adapted to receive an automatic resend request for the
encoded state ?ψ on the first qubit, and further adapted to
produce the encoded state ?ψ on the first qubit in response
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to the automatic resend request. This adaptation requires
classic feedback loop between the decoder and the encoder.

In particular, the encoder is adapted to implement two
qubit unitary operation characterized by UE as below:

UE =

0 0 0 1

0
1

2

1

2
0

0 -
1

2

1

2
0

1 0 0 0

.

The same basic IonQ architecture can be used to imple-
ment a quantum computer implemented decoder for a proba-
bilistic error correction method for use with quantum cir-
cuits with a noise channel N(X) that has a Choi rank not
greater than two, such as

N(X)=N0XN0
†+N1XN1

†

the decoder is adapted to receive a first qubit in an
encoded state ?ψ , and a second qubit into a ground
state ?0 after the encoded state and ground state are
affected by the noise N(X), further the decoder is
adapted to implement two qubit unitary operation UD,
such as

( 2^<0?)VD( 2^?0 )=DUD
†( 2^?0 )

further the decoder is adapted to measure the second qubit
in the standard basis to obtain a classical label i∈{ 0,1} ,
and prepare a third qubit in the ground state ?0 , and
implement two qubit unitary operation VD on the first
qubit and the third qubit. Further the decoder is adapted
to measure the third qubit in the standard basis to obtain
a classical label j∈{ 0,1} , and when (i,j)=(0,0) to accept
as an output δexp a decoded state of the first qubit, and
when (i,j)=(0,0) reject the output δexp of a decoded state
of the first qubit.

Preferably the decoder according to this invention is
adapted to initiate an automatic resend request for the
encoded state ?ψ on the first qubit wherein the output δexp

is rejected via classic feedback communication channel.
As the universal set of gates implemented in IonQ archi-

tecture is capable of implementing any unitary rotation IonQ
architecture is sufficient to support adaptation of the decoder
to implement two qubit unitary operations UD, and VD such
as

UD =

0 0 0 1

0 -
1

2
i 0.5 - 0.5i 0

0 0.5 + 0.5i -
1

2
i 0

1 0 0 0

,

VD =
-0.5i 0.5 3 0 0

0.5 3 -0.5i 0 0

0 0 1 0

0 0 0 1

.

It shall be noted that despite the implementation of 2 qubit
gates for unitary operations in IonQ architecture is prefer-
able way of putting the invention into practice, any other
gate-based quantum computer architecture is feasible to
embody the presented invention.

The invention claimed is:
1. A probabilistic error correction method implemented on

a quantum computing system for use with a communication
channel N(X) that has a Choi rank not greater than two, such
as

N(X)=N0XN0
†++N1XN1

†

and the method comprising steps of:
encoding a first qubit into an encoded state ?ψ ,
putting a second qubit into an arbitrary fixed state

?d1 ,
implementing two qubit unitary operation UE on the

first qubit and the second qubit to obtain an encoded
state UE(?ψ ^?d1 ), such as

UE( 2^?d1 )=E

while E is an encoding matrix, and D is a decoding
matrix such as

DN0E∝ 2,

DN1E∝ 2,

DN0E≠0~DN1E≠0,

and after the encoded state is affected by the noise
N(X), for arbitrary fixed state ?d2 ,

implementing two qubit unitary operation UD, such as
{ UD

†
?0, d2 , UD

†
?1, d2 } are right singular vectors

of D, followed by
measuring the second qubit in an { ?d2 , ?d2

⊥ } basis to
obtain a classical label i∈{ 0,1} , next

preparing a third qubit in the arbitrary fixed state ?d3 ,
and

for an arbitrary fixed state ?d4 , implementing two
qubit unitary operation VD on the first qubit and the
third qubit such as

( 2^∼ d4?)VD( 2^?d3 )=DUD
†( 2^?d2 )

followed by measuring the third qubit in an { ?d4 ,
?d4

⊥ } basis measurement to obtain a classical label
j∈{ 0,1} , and

when (i,j)=(0,0) accepting as an output δexp a decoded
state of the first qubit, and

when (i,j)≠(0,0) rejecting the output δexp of a decoded
state of the first qubit,

wherein the arbitrary fixed states ?d1 , ?d2 , ?d3 ,
?d4 are the ground states ?0 ,

wherein if the output δexp is rejected, the method further
comprising a step of initiating an automatic resend
request for the encoded state ?ψ on the first qubit.

2. The method according to claim 1, wherein
the noise operators are given where

N0 = diag 1, 0, 1

2
,
1

2
and N1 = diag 0, 1, 1

2
,
1

2
i ,

the arbitrary fixed states are ground states ?0 ,
the projective measurement basis is a standard basis, and

UE =

0 0 0 1

0
1

2

1

2
0

0 -
1

2

1

2
0

1 0 0 0

,
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-continued

UD =

0 0 0 1

0 -
1

2
i 0.5 - 0.5i 0

0 0.5 + 0.5i -
1

2
i 0

1 0 0 0

,

VD =
-0.5i 0.5 3 0 0

0.5 3 -0.5i 0 0

0 0 1 0

0 0 0 1

.

3. An encoder for a probabilistic error correction method
implemented on a quantum computing system for use with
a communication channel N(X) that has a Choi rank not
greater than two, such as

N(X)=N0XN0
†++N1XN1

†

and the encoder comprises an encoding module adapted to
encode a first qubit into an encoded state ?ψ , and
put a second qubit into an arbitrary fixed state ?d1 ,

further the encoder is adapted to
implement two qubit unitary operation UE on the first

qubit and the second qubit to obtain an encoded state
UE(?ψ ^?d1 ), such as

UE( 2^?d1 )=E

while E is an encoding matrix, and D is a decoding
matrix such as

DN0E∝ 2,

DN1E∝ 2,

DN0E≠0~DN1E≠0,

wherein the encoder is further adapted to receive an
automatic resend request for the encoded state ?ψ on
the first qubit, and to produce the encoded state ?ψ on
the first qubit in response to the automatic resend
request,

wherein the arbitrary fixed state ?d1 of the second qubit
is a ground state ?0 .

4. The encoder according to claim 3, wherein the encoder
is adapted to implement two qubit unitary operation UE on
the first qubit and the second qubit in a ground state ?0 , and
the noise operators are given where

N0 = diag 1, 0, 1

2
,
1

2
and N1 = diag 0, 1, 1

2
,
1

2
i ,

to obtain an encoded state UE(?ψ ^?0 ), such as

UE =

0 0 0 1

0
1

2

1

2
0

0 -
1

2

1

2
0

1 0 0 0

.

5. A decoder for a probabilistic error correction method
implemented on a quantum computing system for use with
a communication channel N(X) that has a Choi rank not
greater than two, such as

N(X)=N0XN0
†+N1XN1

†

the decoder is adapted to receive a first qubit in an
encoded state ?ψ , and a second qubit into an arbitrary
fixed state ?d1 after the encoded state and arbitrary
fixed state are affected by the noise N(X),

further the decoder is adapted to implement two qubit
unitary operation UD, such as { UD

†
?0, d2 , UD

†
?1, d2 }

are right-singular vectors of D for an arbitrary fixed
state ?d2 , further the decoder is adapted to
measure the second qubit in an { ?d2 , ?d2

⊥ )} basis to
obtain a classical label i∈{ 0,1} , and

prepare a third qubit in the arbitrary fixed state ?d3 ,
and

for an arbitrary fixed state ?d4 , implement two qubit
unitary operation VD on the first qubit and the third
qubit such as

( 2^<d4?)VD( 2^?d3 )=DUD
†( 2^?d2 )

further the decoder is adapted to
measure the third qubit in an { ?d4 , ?d4

⊥ } basis
measurement to obtain a classical label j∈{ 0,1} , and

when (i,j)=(0,0) to accept as an output δexp a decoded state
of the first qubit, and

when (i,j)≠(0,0) to reject the output δexp of a decoded state
of the first qubit,

wherein the decoder is adapted to initiate an automatic
resend request for the encoded state ?ψ on the first
qubit if the output δexp is rejected,

wherein the arbitrary fixed states ?d1 , ?d3 , ?d4 are the
ground states ?0 .

6. The decoder according to claim 5, wherein
the noise operators are given where

N0 = diag 1, 0, 1

2
,
1

2
and N1 = diag 0, 1, 1

2
,
1

2
i ,

the arbitrary fixed states are the ground states ?0 , and
the decoder is adapted to implement two qubit unitary

operation UD, and VD such as

UD =

0 0 0 1

0 -
1

2
i 0.5 - 0.5i 0

0 0.5 + 0.5i -
1

2
i 0

1 0 0 0

,

VD =
-0.5i 0.5 3 0 0

0.5 3 -0.5i 0 0

0 0 1 0

0 0 0 1

.

∗ ∗ ∗ ∗ ∗
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