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ABSTRACT We develop a novel end-to-end trainable feature selection-forecasting (FSF) architecture
for predictive networks targeted at the Internet of Things (IoT). In contrast with the existing filter-based,
wrapper-based and embedded feature selection methods, our architecture enables the automatic selection
of features dynamically based on feature importance score calculation and gamma-gated feature selection
units that are trained jointly and end-to-end with the forecaster. We compare the performance of our FSF
architecture on the problem of forecasting IoT device traffic against the following existing (feature selection,
forecasting) technique pairs: Autocorrelation Function (ACF), Analysis of Variance (ANOVA), Recurrent
Feature Elimination (RFE) and Ridge Regression methods for feature selection, and Linear Regression,
Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM), 1 Dimensional Convolutional Neural
Network (1D CNN), Autoregressive Integrated Moving Average (ARIMA), and Logistic Regression for
forecasting. We show that our FSF architecture achieves either the best or close to the best performance
among all of the competing techniques by virtue of its dynamic, automatic feature selection capability. In
addition, we demonstrate that both the training time and the execution time of FSF are reasonable for IoT
applications. This work represents a milestone for the development of predictive networks for IoT in smart
cities of the near future.

INDEX TERMS Forecasting, feature selection, machine learning, neural network, Internet of Things (IoT),
predictive network, smart city

I. INTRODUCTION

Smart cities of the near future will be made up of smart build-
ings, factories, hospitals, transportation services, schools as
well as smart homes, all of which will be at the disposal of the
digitally-equipped inhabitants of these cities. The Internet of
Things (IoT), which refers to a plethora of sensors dispersed
in a smart city, is expected to become the main enabler of
the services that the smart city will offer. The sensors that
make up the IoT infrastructure will report their data via a
telecommunication infrastructure network to the cloud that
runs Artificial Intelligence (AI) algorithms that interpret and
act upon the data reported by the sensors.

Predictive networking [1]–[10] is a new paradigm in which
the telecommunication infrastructure network itself uses AI-

based algorithms to form predictions of the demand upon
the network in order to allocate networking resources in
advance. Predictive networks stand in sharp contrast with
the traditional reactive networks that merely respond to the
current demand. It is expected that the development of accu-
rate forecasting schemes will play a crucial role for realizing
predictive networks in smart cities of the near future [11].

The goal of this paper is to develop a general architecture
for forecasting that is targeted at forecasting IoT data traffic
but which also potentially has applications to many areas
beyond IoT. The forecasting architecture that we develop in
this paper stands at a point between Deep Learning (DL)
techniques at one end and the rest of the Machine Learning
(ML) techniques at the other end of the spectrum. A key
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difference between these two classes of techniques is in
regard to “features”, namely, aspects of the past data that are
singled out as being important for forming accurate forecasts:
A DL technique discovers the features itself but typically
requires a long past data stream and a high training time.
In contrast, an ML technique that does not use DL typically
utilizes “feature selection”, namely a selection among or a
transformation of the past data such that only these features
(not the entire past data) are fed as input to the forecaster.

The feature selection-forecasting architecture that we de-
velop in this paper, which we abbreviate as FSF, enables
automatic discovery of features in order to minimize the
forecasting error while retaining reasonable space and time
complexity. The key differences between our FSF architec-
ture and the existing literature are as follows:
• The fact that unimportant features are strictly eliminated

in FSF distinguishes our approach from DL techniques.
• The fact that feature discovery is completely automated

in FSF contrasts sharply with the existing categories of
filter-based, wrapper-based and embedded feature selec-
tion techniques [12] in the literature. Our architecture
falls in none of these existing categories.

• Our FSF architecture is not a simple combination of
feature selection and forecasting methods. Instead, it is
a general architecture that dynamically selects features
based on the computed feature importance scores and
performs forecasting based only on the selected fea-
tures.

An artificial neural network (ANN) is said to be “end-to-
end trainable” if all of the parameters of the ANN between
the input and output terminals are trainable. We achieve the
dynamic, automatic feature selection in our FSF architecture
by training both the feature selection and forecasting modules
jointly as an end-to-end trainable ANN. In this paper, we
demonstrate that our architecture offers a high generalization
ability that produces highly accurate forecasts.

We compare the performance of our FSF architecture
on the problem of forecasting IoT device traffic against a
competitive subset of existing (feature selection, forecasting)
pairs and show that our FSF architecture achieves either
the best or close to the best performance by virtue of its
dynamic, automatic feature selection capability. In addition,
we demonstrate that both the training time and the execution
time of FSF are reasonable for IoT applications.

The rest of this paper is organized as follows: In Section II,
we describe the relationship between this work and the
existing literature. In Section III, we describe the detailed
design of our FSF architecture. In Section IV, we present
the performance comparison of our FSF architecture with the
state-of-the-art techniques for forecasting the traffic genera-
tion patterns of IoT devices. In Section V, we present our
conclusions.

II. RELATIONSHIP TO THE STATE OF THE ART
In this section, we contrast our work with the state of the
art in two categories: (1) We contrast our work with DL

forecasting techniques as well as statistical models, none
of which use feature selection. (2) We state the differences
between our work and ML techniques that utilize feature se-
lection. We subdivide this second category into two subcate-
gories: (2.1) non-adaptive (i.e. filter-based) feature selection,
and (2.2) adaptive feature selection techniques that utilize
either wrapper-based or embedded feature selection. After
contrasting our work with each of the above categories for
feature selection and forecasting, we describe the relationship
of our work to the recent schemes that have appeared in the
literature on forecasting the traffic generation patterns of IoT
devices, which is the immediate domain of application of our
FSF architecture in this paper.

In regard to the first category, in the current forecasting
literature, both deep neural networks and statistical models
are used for forecasting without feature selection. We shall
first address DL techniques and then turn to the compar-
ison with statistical models. The architectural designs of
DL techniques, such as LSTM and 1D CNN, are able to
perform internal feature extraction in order to minimize the
forecasting error: LSTM is used for short-term forecasting
of the electric load in [13]. By using 1D CNN, Reference
[14] forecasts the daily electricity load. Moreover, a hybrid
of 1D CNN and LSTM is used for forecasting Particulate
Matter concentration in smart cities in [15]. The results of
the works [13]–[15] show that DL techniques are able to
achieve relatively high performance for each of these distinct
forecasting problems. However, these techniques need data
sets with a relatively high number of samples because of their
complex internal architectures. In contrast, we shall show that
our architecture FSF is able to reach higher performance than
these DL techniques on smaller data sets since the internal
architecture of FSF is composed of simpler operations than
those of the DL techniques.

Now, we address the differences between statistical fore-
casting models and our work. Statistical models such as
ARIMA and Seasonal ARIMA (SARIMA) capture the linear
relationship among the future, current, and the past values
of a time series, if such an underlying relationship exists in
the data. In [16], the authors use ARIMA for forecasting the
software clone evolution over time; their results show that
ARIMA underperforms with respect to the ANN models due
to the nonlinear structure in the data. SARIMA is used for
long-term forecasting of the significantly large wave heights
in [17]. The models in [16], [17] are able to achieve high
performance for data that have a linear underlying structure.
In contrast with ARIMA and SARIMA, our FSF architecture
is able to capture both linear and nonlinear relationships due
to the flexibility inherent in our architecture.

In regard to the second category, we shall first address
the difference between our work and the first subcategory,
namely non-adaptive (also known as filter-based) feature se-
lection techniques. The articles in this subcategory select the
relevant features with respect to feature importance scores. In
this category, the following set of articles calculate the feature
importance scores based mostly on statistical functions: Ref-
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erence [18] computes both the ACF and the partial ACF with
a correlation threshold in order to perform forecasting on
univariate time series data by using ANN forecasters. The au-
thors in [19] propose the method of predominant correlation
and use this method to calculate a feature importance score
in order to select features with a constant threshold value. In
[20], initially, the relevant features are selected empirically
based on mutual information; subsequently, the power load
of the smart grid is forecast using an ANN.

In the same subcategory of filter-based methods, the fol-
lowing articles calculate the feature importance scores by
using ML or fuzzy logic: In [21], the most important features
are selected empirically based on the feature importance
scores that are calculated by the authors’ proposed method-
ology that is based on a fuzzy curve. In [22], if a connection
weight of a perceptron that has been trained to make predic-
tions by using all of the available features is greater than a
fixed threshold, a feature that is the input of that connection
weight is selected. In the filter-based feature selection meth-
ods, typically, a fixed (that is, untrainable) threshold value or
a policy is applied on the importance scores in order to select
the relevant features. In contrast, our FSF architecture trains a
neural network based on trainable feature importance scores
and a trainable value of the threshold.

Now, we turn to the second subcategory of feature selec-
tion techniques, namely adaptive feature selection, which is
comprised of wrapper-based feature selection and embed-
ded feature selection methods. We shall first contrast our
work against wrapper-based feature selection methods for
forecasting in the literature. These feature selection methods
minimize the forecasting error iteratively. Reference [23]
combines ant colony optimization and a genetic algorithm
to select features in order to forecast the 24-hours-ahead
electricity load using an MLP. The authors in [24] forecast
the electricity load by using a multi-output SVR with the fire-
fly algorithm for feature selection. Reference [25] performs
wrapper-based feature selection by updating the features
according to the summation of the connection weights of a
single-layer ANN. In [26], a two-stage wrapper based fea-
ture selection algorithm is proposed for forecasting financial
time series data. References [27]–[31] perform a filter-based
feature selection prior to the iterations of the wrapper-based
feature selection. In contrast with all of these past wrapper-
based feature selection methods, our FSF architecture selects
the important features by minimizing the forecasting error via
backpropagation in the place of performing a search for those
features.

Within the second subcategory of adaptive feature se-
lection methods for forecasting, embedded feature selec-
tion methods minimize the forecasting error by performing
weighted or standard feature selection during the training
of the model. Reference [32] proposes an algorithm based
on Lasso for forecasting solar intensity. Reference [33] uses
Bayesian Ridge Regression for forecasting wind speed and
direction 1 to 24 hours ahead. Reference [34] proposes the
group method of data handling based on the Elastic Net in

order to forecasting the load of a power grid. Although the
works in this subcategory select features during the training
of the forecaster, some parameters of these methods have to
be set before training. In contrast with these past embedded
feature selection methods for forecasting, all of the param-
eters in the design of our FSF architecture are trainable.
Furthermore, our architecture can be combined and trained
with any forecasting model via backpropagation.

Finally, we describe the relationship of our work to the
past work on forecasting the traffic generation patterns of IoT
devices, which is the immediate application domain of our
FSF architecture. Forecasting the traffic generation patterns
of individual IoT devices was proposed in [11]. In that work,
the authors demonstrated the performance of MLP, LSTM,
1D CNN and ARIMA using feature selection that is based on
ACF, embedding dimension as well as Analysis of Variance
(ANOVA). Furthermore, Reference [4] used MLP, LSTM,
and ARIMA, and each of [5] and [6] used MLP using ACF-
based feature selection for forecasting the traffic generation
pattern of an IoT device. In contrast with these past articles
that are based on existing feature selection methodologies
for forecasting IoT traffic, in this paper, we propose a novel
architecture for forecasting IoT traffic generation patterns,
which combines dynamic, automatic feature selection and
forecasting.

III. END-TO-END TRAINABLE FEATURE
SELECTION-FORECASTING ARCHITECTURE
In this section, we describe our end-to-end trainable feature
selection-forecasting architecture FSF. Since our immediate
application domain is that of forecasting the traffic generation
pattern of an IoT device, we shall refer to the time series data
as the “traffic generation pattern” of an IoT device in defining
all of our variables. Table 1 gives the list of the mathematical
symbols that we use in the order in which they appear in this
paper.

Our FSF architecture is shown in Fig. 1. We let {xt}
denote the traffic generation pattern of an individual IoT
device, where t denotes the discrete time index.1 As shown
in the figure, the input of our FSF architecture is the sub-
set of the past samples, denoted by {xt−l}l∈{0,...,L+1}, at
current time t. The output of our architecture, denoted by
{x̂t+k}k∈{1,...,K}, is the set of forecasts at current time t over
the next K samples.

As shown in Fig. 1, our FSF architecture is comprised of
three modules: Feature Importance Score Calculation (FISC)
module, Gamma-Gated Feature Selection (GG-FS) module,
and the Forecasting module. The main idea behind FSF is
as follows: The FISC module transforms the input vector of
the past data into a vector of importance scores. The GG-FS
module compares these importance scores against a threshold

1In practice, an IoT device typically generates traffic at multiples of a
traffic generation period for that device; hence, we use a discrete time index
t in order to refer to those instances at which the IoT device can potentially
generate traffic. Note that this choice also allows the case in which the IoT
device may generate zero traffic at a subset of these discrete-time instances.
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TABLE 1: List of Symbols

Symbol Meaning
xt Number of bits of traffic generated by an IoT

device at current time t
x̂t+k kth-step ahead forecast at current time t
smt,l Feature importance score that corresponds to

xt−l at iteration m
γm Value of the feature selection threshold at iter-

ation m
x̃mt−l The lth past traffic generation sample for iter-

ation m at current time t after the application
of feature selection

L Number of samples into the past used by the
FSF architecture

K Total number of steps into the future for which
forecasts are formed

E Total number of MLP layers
ne Number of neurons at layer e of the MLP
ELSTM Number of fully connected layers of LSTM
he Number of neurons at fully connected layer e

of LSTM
hLSTM Total number of LSTM units
cCNN Number of filters in the convolution layer of

1D CNN
ce Number of neurons in the fully connected

layer e of 1D CNN
p Order of observation lags in ARIMA
q Number of samples that fall in one Moving

Average (MA) window for ARIMA
d Order of differencing for ARIMA

in order to determine dynamically which elements of the
input vector will be selected as features to be passed onto
the Forecasting module. Finally, the Forecasting module per-
forms forecasting based on these selected features. The key
novelty in our design is that all of the parameters in our FSF
architecture are trainable end-to-end via backpropagation.

Backpropagation completes a forward and a backward
pass through the entire FSF architecture in Fig. 1 in each
iteration while updating the values of all of the parameters.
Throughout this paper, the iteration indexm shall appear as a
superscript on each of the parameters of our architecture. For
example, in Fig. 1, the input to the GG-FS module, labeled as
γm, denotes the value of the threshold parameter at iteration
m of the backpropagation through the FSF architecture.

We now describe the operation of the modules of our FSF
architecture in Fig. 1. First, the FISC module computes the
importance score for each of the elements of the input vector
by measuring the pairwise relationship between the current
input xt and each of the past inputs xt−l, ∀l ∈ {1, . . . , L+1}.
In the figure, smt,l is the importance score for xt−l at iteration
m; it measures the importance of xt−l in minimizing the

forecasting error at the output of the FSF architecture.2

Second, each of the features xt−l and the corresponding
feature importance score smt,l of that feature is passed onto the
GG-FS module. The GG-FS module passes only the selected
features {x̃mt−l}l∈{0,...L} to the Forecasting module, where
the values of the features that have not been selected are set
to zero.3

Third, the Forecasting module performs K-step ahead
forecasting. Any forecasting architecture with trainable pa-
rameters can be used for this Forecasting module. The pa-
rameters of the Forecasting module are trained jointly with
the parameters of the FISC and GG-FS modules in our FSF
architecture.

We shall now delve into the inner architecture of each of
the FISC, GG-FS and Forecasting modules of FSF.

A. FEATURE IMPORTANCE SCORE CALCULATION
(FISC) MODULE
The inner architecture of the FISC module is given in Fig. 2.
In the first layer of the FISC module (which is the left-most
layer in the figure), which we shall call the “customized
layer”, the lth neuron learns the relationship between xt and
xt−l, where l ∈ {1, . . . , L + 1}. The remainder of the FISC
module is a fully connected 2-layer perceptron as shown in
the figure.4

For each layer of the FISC, we set the number of neurons
equal to the number of input pairs, which is L + 1. We
represent the importance scores in the range (0, 1). To this
end, we set the activation function of each neuron in the last
(i.e. output) layer of FISC to the unipolar sigmoid function.
We also set the activation function of each neuron in the cus-
tomized layer as well as the first layer of the fully-connected
2-layer perceptron to the tangent hyperbolic (tanh) function.
Furthermore, each of the connection weights and the biases
{(w̃l,1, w̃l,2, b̃l)}l∈{1,...,L+1} is initialized as the realization
of a uniform random variable on the interval [0, 1]. Note that
the training of FISC is performed during the training of the
entire FSF architecture; that is, this module is not trained in
a stand-alone fashion.

B. GAMMA-GATED FEATURE SELECTION (GG-FS)
MODULE
In Fig. 3, we display the inner architecture of the GG-FS
module. This module has two input vectors, which are (1)

2The reason that the outputs of the FISC module are correctly interpreted
as importance scores is that only a selected subset of these scores, which are
deemed important, will be passed onto the Forecasting module by the GG-FS
module. The operation of the GG-FS module will be described shortly.

3One must keep in mind that our FSF architecture selects features dynam-
ically. Hence, at the end of training, after all of the parameters of the entire
architecture have converged, the FISC module computes the importance
scores dynamically. Hence, the particular features that are selected by GG-
FS are also determined dynamically.

4For the FISC module, in the place of a 3-layer perceptron, which
would be a general ANN architecture, we have chosen an architecture that
possesses a customized design for the first layer in order to circumvent the
greater number of local optima that would result if a fully-connected 3-layer
design were used.
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FIGURE 1: End-to-end trainable Feature Selection-Forecasting architecture (FSF), which is comprised of the Feature
Importance Score Calculation (FISC), Gamma-Gated Feature Selection (GG-FS) and Forecasting modules

FIGURE 2: Inner architecture of the Feature Importance
Score Calculation (FISC) module

the data points of the time series {xt−l}l∈{0,...,L} and (2)
the feature importance scores {smt,l}l∈{0,...,L}, which are the
outputs of the FISC module.

As shown in Fig. 3, at iteration m, for each value of l, the
GG-FS module computes the value of x̃mt−l by using xt−l, smt,l
in the lth GG-FS Unit as well as the trainable parameter γm,
which is common to all of the GG-FS units. That is, there is
only a single trainable threshold parameter γm for the entire

FIGURE 3: Inner architecture of the Gamma-Gated Feature
Selection (GG-FS) module

FSF architecture.5

Fig. 4 displays the inner architecture of a GG-FS Unit. In
this figure, xt−l and smt,l are the inputs, and x̃mt−l is the output.
In this figure, ⊗ denotes ordinary multiplication, and u(·)
denotes the unit step function which outputs 0 if its argument
is negative and outputs 1 otherwise. If smt,l < γm, xt−l is not

5Recall that the value of γm is updated by using backpropagation across
the entire FSF architecture at each training iteration m.
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FIGURE 4: Gamma-Gated Feature Selection (GG-FS) Unit

selected as a feature. In this case, x̃mt−l is set to 0. If smt,l ≥ γm,
then xt−l is selected as a feature. In this case, the GG-FS Unit
multiplies xt−l by the connection weight wml and adds the
bias term bml and obtains x̃mt−l; that is, in the case that xt−l is
selected as a feature, it is transformed into x̃mt−l via a single
linear neuron.

Now, it is important to keep in mind that in order for
the entire FSF architecture to be end-to-end trainable via
backpropagation, all of the functions in the FSF architecture
must be differentiable. Since the unit step function u(·) is not
a differentiable function, we implement a differentiable ap-
proximation to the unit step function as u(x) ≈ 1/(1+e−αx),
which is a sigmoid function with steepness parameter α. In
our implementation, we set α = 10.

Recall that smt,l is a real number in the range (0, 1). Note
that if γm ≥ 1, then none of the features will be selected
by the GG-FS module. Conversely, if γm ≤ 0, then all of
the features will be selected. In order to prevent the FSF
architecture from getting stuck at selecting none or all of the
features, we restrict the value of γm such that it lies between
0 and 1.

C. FORECASTING MODULE

Any forecasting scheme can used as the Forecasting module
of the FSF architecture in Fig. 1. The only criterion for
the selection of a forecasting scheme is that the forecasting
scheme be trainable by using backpropagation. This is a nec-
essary condition in order to retain the end-to-end trainability
of the entire FSF architecture. In Section IV, we examine
the performance of the FSF architecture under the MLP and
LSTM forecasting schemes.

As shown in Fig. 1, at each iteration m, the input to
the Forecasting module is the vector of selected features
{x̃mt−l}l∈{0,...,L}, and the output of the Forecasting module is
the vector of 1- to K-step ahead forecasts {x̂t+k}k∈{1,...,K}.

D. NUMBER OF TRAINABLE PARAMETERS FOR
FEATURE SELECTION IN THE FISC AND GG-FS
MODULES OF THE FSF ARCHITECTURE

We now compute the order of the number of trainable
parameters in the FISC and GG-FS modules of the FSF

architecture, which carry out feature selection.6

To this end, first, we note that there are L + 1 neurons
at each layer of the FISC module in Fig. 2. Since the first
layer is not a fully connected layer and there are only three
parameters (namely two connection weights and one bias
parameter) for each neuron, the total number of parameters
in the first layer of FISC is equal to 3(L+1). In addition, the
rest of the FISC module is comprised of two fully connected
layers, each of which consists of L+1 neurons; hence, there
are 2(L + 1) bias parameters for these layers. The number
of connection weights across all of the layers of FISC is
2(L + 1)2. Thus, the total number of parameters in FISC is
2L2+9L+7. Furthermore, since there areL+1 GG-FS Units
in the GG-FS module, and there are only two parameters
in each GG-FS Unit, the total number of parameters in the
GG-FS module is 2(L + 1). In addition, the parameter γm

is an input to the GG-FS module. Hence, the total number
of parameters for the GG-FS module is 2L + 3. As a result,
the total number of parameters in the FISC and the GG-FS
modules is 2L2 + 11L + 10. Hence, the total number of
parameters for the FISC and the GG-FS modules is O(L2).

IV. RESULTS

In this section, by using either an MLP or an LSTM fore-
caster in the FSF architecture in Fig. 1, we aim to compare
the forecasting performance of our FSF architecture against
the performance obtained by a selected subset of the fol-
lowing (feature selection, forecaster) pairs: Autocorrelation
Function (ACF), Analysis of Variance (ANOVA), Recurrent
Feature Elimination (RFE) and Ridge Regression for feature
selection, and Linear Regression, Multi-Layer Perceptron
(MLP), Long Short Term Memory (LSTM), 1 Dimensional
Convolutional Neural Network (1D CNN), Autoregressive
Integrated Moving Average (ARIMA), and Logistic Regres-
sion for forecasting. 7

To this end, in this section, we first present the collection
and processing methodology for IoT traffic data sets on
which we have obtained our results. Second, we present
the methodology for competing feature selection methods
and for tuning the hyperparameters of competing forecast-
ing models. Third, we describe the 10-fold cross-validation
method for the performance evaluation of all of the forecast-
ing models under examination. Fourth, we present the results
on the forecasting performance as well as the training and
execution times.

6We calculate the number of parameters excluding those in the Forecast-
ing module because the number of parameters in the Forecasting module
depends on the particular forecasting scheme.

7In order to compare the performance of the FSF architecture against
that of representative (feature selection, forecaster) pairs, we have selected
ACF-based and ANOVA-based feature selection as representatives of filter-
based, RFE as a representative of wrapper-based, and Ridge Regression as a
representative of embedded feature selection methods.
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A. COLLECTION AND PROCESSING METHODOLOGY
FOR INTERNET OF THINGS TRAFFIC DATA SETS

In [11], the traffic generation patterns of individual IoT
devices were classified into four distinct classes as follows:
First, if the IoT device generates only a constant number of
bits, its traffic generation pattern is said to be “Fixed Bit”;
otherwise, it is “Variable Bit”. Furthermore, if the generation
intervals of the traffic of the IoT device are constant, its
traffic is called “Periodic”; otherwise, it is called “Aperiodic”.
According to this classification, the traffic generation of an
individual IoT device falls in one of the four classes: (1)
Fixed Bit Periodic (FBP), (2) Fixed Bit Aperiodic (FBA), (3)
Variable Bit Periodic (VBP), and (4) Variable Bit Aperiodic
(VBA). Since both the number of bits and the generation
interval for the FBP class are known in advance, forecasting
is required only for the traffic generation patterns in the VBP,
VBA and the FBA classes. In this paper, we present our
results on the traffic generation patterns of three distinct IoT
devices for each of these classes.

For the VBP device class, we collected sensor measure-
ments on Relative Humidity (RH) and Light Dependent
Resistor (LDR) sensors, and obtained the data for the Water
Level sensor from [35]. For the VBA class, we obtained the
actual sensor readings for the NO2 sensor from [36], [37],
and we collected the data for the Temperature and Elevator
Button8 sensors.9 For the FBA class, we obtained the sensor
readings for the NMHC sensor from [36], [37]; for the Smart
Home Energy Generation sensor from [38], and for the Wind
Speed sensor from [39].

We converted each sequence of actual readings obtained
for each sensor listed in the VBP and VBA classes above
to the sequence of number of bits that the sensor needs
to send by performing Huffman compression on the fixed-
bit representation of each such reading.10 On each sensor
reading for each sensor listed in the FBA class above, we
used a fixed-bit representation.

For all of the (feature selection, forecasting) pairs as well
as FSF under examination, we set the total number of features
(namely, the number of successive data samples into the past)
to 120.11

8We measure the number of times that an elevator button is pressed in
each minute.

9We have collected the sensor readings for RH, LDR, Temperature and
Elevator Button data sets in our laboratory over 2.5 months.

10Huffman coding thus leads to a variable number of bits to represent each
sensor reading.

11The total number of samples for the data set of each sensor is as follows:
9357 for RH; 65535 for LDR; 25000 for Water Level; 2288 for NO2;
7371 for Temperature; 40080 for Elevator Button; 7715 for NMHC; 8692
for Smart Home; and 25000 for Wind Speed. In addition, the number of
quantization levels (i.e. the number of unique values for the number of bits)
is 2 for the FBA class and is as follows for each data set in VBP and VBA
classes: 6 for RH; 213 for LDR; 60 for Water Level; 7 for NO2; 10 for
Temperature; and 15 for the Elevator Button.

B. HYPERPARAMETER SEARCH AND FEATURE
SELECTION FOR FORECASTING MODELS AGAINST
WHICH FSF IS COMPARED
In order to ensure that we compare the performance of
our FSF architecture against the minimum forecasting error
that can be obtained by each competing model, we perform
a grid search for tuning the hyperparameters of the MLP,
LSTM, ARIMA, 1D CNN, Logistic Regression and Ridge
Regression models in this section.

To this end, first, in Table 2, we present the hyperpa-
rameters and the search set for each forecasting model. The
first column of this table shows the names of the forecasting
models. The second column displays the names of the hyper-
parameters. For all forecasting models except ARIMA, the
third column shows the values for the hyperparameters that
are set empirically or the set of values over which grid search
is performed. For the ARIMA model, the third column shows
the tuning methods for its hyperparameters.

In Table 3, we present the feature selection methods
against which our FSF architecture is compared. The first
column of this table displays the names of the data sets.
The second column shows the features which are selected
via ACF-based Feature Selection. The third, fourth and the
fifth columns describe the methodology for ANOVA-based
Feature Selection, RFE, and Ridge Regression, respectively.

C. CROSS-VALIDATION: TRAINING AND TEST
In order to observe the performance of the forecasting mod-
els, we train and test each of the forecasting models by
using 10-fold cross-validation (CV).13 We calculate the per-
formance of the forecaster at each fold f and compute the
mean performance over all of the folds. At each fold f , during
training, we minimize the Mean Absolute Error (MAE) for
the VBP class, and the Categorical Cross-Entropy for the
VBA and the FBA classes14. In order to prevent overfitting,
instead of using a fixed number of epochs, we use a variable
number of epochs across all of the folds of any given data set.

We define 1/2-sMAPE as sMAPE divided by 2.15. Fur-
thermore, in the rest of this paper, misclassification error will
refer to the average of the fraction of classification errors
across the length K vector of forecasts in Fig. 1.

As the output of CV, we obtain three different measure-
ments: (1) the forecasting error 1/2-sMAPE for the VBP and

12By empirically analyzing the PACF and ACF, we set the value of each of
the p and q hyperparameters to the greatest index of the sample whose score,
in Partial ACF (PACF) and ACF respectively, is greater than a threshold.

13In order to obtain a 10-fold CV, we divide the time series data set into
10 disjoint subsets of an equal number of elements in each subset. Then, in
each step (namely, “fold”) f of the 10-fold CV, we use the f th subset as the
test set and the rest nine subsets as the training set. That is, by the end of the
CV, we have use each subset nine times as the training set and exactly once
as the test set.

14We use softmax at the output of the forecaster for the VBA and the
FBA classes. As a result, we minimize the Categorical Cross-Entropy for
the misclassification error between the output classes that are constituted by
the distinct number of bits that a sensor can generate.

15This serves to normalize this error measure such that it lies in the range
[0%, 100%] rather than in the range [0%, 200%] (as is the case for the
original sMAPE measure).
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TABLE 2: GRID SEARCH FOR TUNING HYPERPARAMETERS OF FORECASTING MODELS

Model Name Hyperparameters Value / Search Set

MLP

The number of layers E 4
The number of neurons nE at layer E K
ne at each layer e ∈ {1, . . . , E − 1} {2j}j∈{1,...,8}
The activation function of each neuron at each hidden layer ReLU

The activation function of each neuron at output layer
Linear (for VBP)

softmax (for VBA & FBA)

LSTM

The number of LSTM layers 1
The number of LSTM units hLSTM at each LSTM layer {2j}j∈{1,...,8}
The number of fully connected layers ELSTM 3
The number of neurons hELSTM

at layer ELSTM K
he at each fully connected layer e ∈ {1, . . . , ELSTM − 1} {2j}j∈{1,...,8}
The activation function of each LSTM unit and ReLU
neuron at hidden fully connected layers

The activation function of each neuron at output layer
Linear (for VBP)

softmax (for VBA & FBA)

1D CNN

The number of convolution layers 1
The number of filters cCNN at each convolution layer {2j}j∈{1,...,8}
The kernel size of each convolution filter (3, 3)

The stride of each convolution filter (2, 1)

The number of max pooling layers 1
The kernel size of each max pooling filter (3, 3)

The number of fully connected layers ECNN 4
The number of neurons cECNN

K
ce at each fully connected layer e ∈ {1, . . . , ECNN − 1} {2j}j∈{1,...,8}
The activation function of each convolution and ReLU
hidden fully connected layers

The activation function of each neuron at output layer
Linear (for VBP)

softmax (for VBA & FBA)

Logistic
Regression

The regularization term {0.01, 0.1, 1, 10}
The method of penalty {none, l1, l2, elasticnet}

Solver

Newton’s method,
limited-memory

Broyden–Fletcher–
Goldfarb–Shanno

algorithm,
library for large

linear classification,
stochastic average gradient,
stochastic average gradient

with non-smooth penalty

Model Name Hyperparameters Tuning Method

ARIMA
The order of observation lags, Autoregression (AR in ARIMA), p Analysis based on PACF12

The degree of difference for the samples in the raw time series data, d Dickey Fuller Test
The number of samples that fall in one Moving Average (MA) window, q Analysis based on ACF
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TABLE 3: FEATURE SELECTION METHODS AGAINST WHICH FSF IS COMPARED

Data Sets
ACF-based

Feature Selection
ANOVA-based

Feature Selection

Recurrent Feature
Elimination

(RFE)
Ridge Regression

RH
{1, 2, 3, 4, 5}

∪
{12 ∗ j}j∈{1,...10}

For each feature, we first
compute the F-ratio [40]
between that feature and
the desired output by using
ANOVA in the
statsmodels [41] library
in Python.

We sort the features with
respect to their F-ratios in
descending order and select
the first twelve features
from this sorted sequence
of features.

We use the RFE algorithm
from scikit-learn library
whose inputs are the
forecasting model and the
desired number of features
(denoted by N ).

We selected the forecasting
model as Linear Regression.

We build an outer loop for N
from 1 to L in order to find
the value of N that
achieves the minimum
forecasting error.

We use the scikit-learn [42]
library in Python.

By using this library, we
normalize the data at the
output of Ridge (which is
the input of the regressor)
by subtracting the
mean of the data and by
dividing the result by the
l2-norm of the data.

We search for the value of
the coefficient of the
l2-regularization term, α, in
the set {10j}j∈{−7,...,−1}.

NO2
The first

3 samples

NMHC {23 ∗ j}j∈{1,...,5}

LDR

The highest
12 values

of the ACF

Water Level
Temperature

Elevator Button
Wind Speed
Smart Home

Energy
Generation

the VBA classes, and the misclassification error for the FBA
class, (2) the training time, and (3) the execution time.

D. PERFORMANCE COMPARISON OF THE FSF
ARCHITECTURE AGAINST EXISTING FORECASTING
MODELS
In this section, we aim to present the performance evaluation
of the FSF architecture and its comparison against the ex-
isting forecasting models. To this end, for each data set in
VBP, VBA and FBA classes, we measure and display the
performance of each forecasting model averaged over the
values of K from 1 to 15.16

First, in Fig. 5, we present the average 1/2-sMAPE per-
formance of our FSF architecture under each of the MLP
and LSTM forecasters (namely FSF-MLP and FSF-LSTM
respectively) for the RH sensor, LDR, and the Water Level
data sets, each of which falls in the VBP class. In this figure,
we see that for all of these data sets, FSF-MLP achieves the
lowest forecasting error among all of the forecasting models.
We also note that the performance of FSF-MLP almost equals
that of FSF-LSTM for the LDR and the Water Level data sets.

For the RH data set in Fig. 5(a), we see that the linear
forecasting models (RFE, Ridge, Linear Regression) achieve
the minimum forecasting error among the models under
comparison (excluding FSF-MLP and FSF-LSTM), which
suggests that an approximately linear relationship is inherent
in the data. In Fig. 5(b), for the LDR data set, we see that
the nonlinear forecasting models outperform the linear and

16In the Appendix, we present the performance comparison for each value
of K separately.

statistical models, which suggests that a nonlinear relation-
ship is inherent in the data. In Fig. 5(c), for the Water Level
data set, we see that the nonlinear models that possess feature
selection capability (namely ACF-MLP and ANOVA-MLP)
or those with feature extraction in their internal architecture
(namely LSTM and 1D CNN) outperform the other existing
models. The fact that FSF-MLP outperforms the best existing
models in each of these three categories suggests that FSF
is able to capture both linear and nonlinear relationships as
well as performing well in capturing trends in data for which
feature extraction is crucial. Jointly, for the VBP class, these
results point to the advantages of our highly flexible, end-to-
end trainable FSF architecture.

Second, in Fig. 6, we present the 1/2-sMAPE perfor-
mance (averaged over K) of our FSF-MLP and FSF-LSTM
architectures for the NO2, Temperature, and the Elevator
Button data sets that fall in the VBA class. Our results in
this figure show that both the FSF-MLP and FSF-LSTM
architectures achieve at least the same performance as those
existing models that achieve the minimum forecasting error.
In addition, in Fig. 6(a), LSTM and ANOVA-MLP are seen
to be the forecasting models that are the most competitive
against our FSF architecture for the NO2 data set. The reason
is that l approaches L, the F-ratio increases and thus the
features xt−l that have values near L become more important
for this data set. Accordingly, LSTM performs well because
it captures the long-term relationships, and ANOVA-MLP
performs well because it selects the features that have a
high F-ratio. This implies that the FSF architecture is able to
select the important features, each of which has a long-term
relationship with the future samples.
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(a) RH (b) LDR

(c) Water Level

FIGURE 5: Comparison of FSF-MLP and FSF-LSTM against existing models with respect to the average 1/2-sMAPE over the
values of K for (a) RH, (b) LDR, and (c) Water Level data sets, each of which falls in the VBP class

(a) NO2 (b) Temperature

(c) Elevator Button

FIGURE 6: Comparison of FSF-MLP and FSF-LSTM against existing models with respect to the average 1/2-sMAPE over the
values of K for (a) NO2, (b) Temperature, and (c) Elevator Button data sets, each of which falls in the VBA class
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(a) NMHC (b) Wind Speed

(c) Smart Home Energy Generation

FIGURE 7: Comparison of FSF-MLP and FSF-LSTM with existing models with respect to average 1/2-sMAPE over the values
of K for the (a) NMHC, (b) Wind Speed, and the (c) Smart Home Energy Generation data sets that fall in the FBA class.

Third, in Fig. 7, we present the average misclassification
error of FSF-MLP and FSF-LSTM for the NMHC, Wind
Speed, and the Smart Home Generation data sets that fall in
the FBA class. Our results in this figure show that both FSF-
MLP and FSF-LSTM are able to achieve either the minimum
error or an error close to the minimum that is achieved by the
existing forecasting models.

In summary, the above results jointly show that FSF-MLP
and FSF-LSTM achieve either the best performance or a
performance that is competitive with the best-performing
models for all data sets. In addition, our results suggest
that the generalization ability of the FSF architecture across
widely different data sets is high. On the other hand, we also
see that the models that utilize the FSF architecture signifi-
cantly outperform the existing forecasting models for the data
sets in the VBP class. Furthermore, the FSF architecture is
able to achieve a performance that is the same as or close to
that of the best existing models for the VBA and the FBA
classes.

We now aim to display the differences between the feature
importance scores that are calculated by the FISC module in
the FSF architecture and those are calculated by the other
feature selection methods. To this end, in Fig. 8 for the RH
data set, we show the average (over samples) of the feature

importance scores in FSF-MLP17, the coefficients of Linear
Regression, the values of the ACF, and the normalized F-
ratios of ANOVA.

Fig. 8(a) shows the vector of feature importance scores of
FSF-MLP, which appears at the output of the FISC module.
We see that the FSF architecture captures the important fea-
tures that do not possess any seasonal trend and which thus
cannot be found by a simple linear operation. In Fig. 8(b), we
see that ACF captures the seasonal trends of the VBP traffic
generation; however, feature selection based only on these
seasonal trends is suboptimal due to the linear structure of
the ACF.

Fig. 8(c) presents the coefficients in ANOVA, for which
the scores of the features are defined based on variance. In
this figure, we see that the features xt−l for smaller values of
l are found to be more important by ANOVA. In Fig. 8(d),
we see that the Linear Regression model amplifies the data
sample with a time lag of 1, namely xt−1, which has the
highest covariance with xt+1 according to ANOVA. That
is, we see that the FSF architecture is able to capture this
nonlinear relationship (that is not captured by any other
method) between the features and the desired output of the
forecaster in order to maximize the forecasting performance.

17For the RH data set, we only present the feature importance scores for
FSF-MLP because FSF-MLP outperforms FSF-LSTM in this case.
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(a) Feature importance scores of FSF-MLP (b) Autocorrelation Function (ACF)

(c) ANOVA Coefficients (d) Linear Regression Coefficients

FIGURE 8: Coefficients of distinct schemes as a function of the sample lag for the RH data set, which falls in the VBP class

E. COMPARISON OF THE FSF ARCHITECTURE
AGAINST EXISTING FORECASTING MODELS WITH
RESPECT TO TRAINING AND EXECUTION TIMES
In order to present the trade-off between the forecasting per-
formance and the computation (training and execution) time
of the FSF architecture, we now present our results on the
training and the execution time of each model in the previous
section. We have obtained these results on the Google Colab
computational platform that has a Tensor Processing Unit
(TPU) accelerator.

1) Training Time

In this section, we present the comparison of the forecasting
models with respect to training time. Note that training time
depends not only on the architecture of the forecasting model
but also on the number of samples in the data set; hence, the
training times of a forecasting model on distinct data sets are
not directly comparable.

In Fig. 9, we present the training time of each forecasting
model for the data sets in the VBP, VBA and the FBA
classes. In this figure, we see that the training time of the FSF
architecture is comparable to that of LSTM, 1D CNN, and
ARIMA. In addition, the training times of FSF-MLP, FSF-

LSTM, LSTM, 1D CNN, and ARIMA models are higher
than those of the stand-alone MLP and the linear forecasting
models.

2) Execution Time

In Fig. 10, we present the execution time of each forecasting
model for the data sets in the VBP, VBA, and the FBA
classes. We see that for all data sets, the execution times
of FSF-MLP and FSF-LSTM are less than 10 ms, which
is highly acceptable for the IoT applications that require
subsecond computation time. On the other hand, we also see
that FSF-MLP, FSF-LSTM, and ARIMA have the highest
and Linear Regression, Logistic Regression, RFE, and Ridge
have the lowest execution times. Although the execution time
of the FSF architecture is comparable to that of ARIMA in
the majority of cases, it is 1 to 3 orders higher than those
of LSTM, MLP, ACF-MLP, ANOVA-MLP, 1D CNN, Linear
Regression, Logistic Regression, RFE, and Ridge.

V. CONCLUSION
We have developed a novel feature selection-forecasting
architecture, called FSF, that is able to perform automatic,
dynamic selection of features in order to minimize the fore-
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(a) Training Time for VBP Data Sets (b) Training Time for VBA Data Sets

(c) Training Time for FBA Data Sets

FIGURE 9: Training time of the forecasting models on each data set in the following device classes: (a) VBP, (b) VBA, (c)
FBA

(a) Execution Time for VBP Data Sets (b) Execution Time for VBA Data Sets

(c) Execution Time for FBA Data Sets

FIGURE 10: Execution time per sample of the forecasting models on each data set in the following device classes: (a) VBP, (b)
VBA, (c) FBA
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casting error. Our architecture stands at a point between
Deep Learning techniques that discover all of the features
themselves but require long data for training, and the rest of
the Machine Learning techniques that select features based
on existing filter-based, wrapper-based and embedded feature
selection methods.

We have demonstrated the performance of our FSF ar-
chitecture on the problem of forecasting the future traffic
generation patterns of individual IoT devices. We have found
that FSF achieves either the best or close to the best per-
formance among a competitive selection of existing (fea-
ture selection, forecasting) technique pairs. Our architecture
achieves such high performance by virtue of the fact that all
of the parameters of the architecture are end-to-end trainable
via backpropagation.

The execution time of FSF per sample is below 7 ms on the
Google Colab platform. Such an execution time is reasonable
for massive IoT applications, in which the delay constraints
are on the order of seconds to hours. As a result, we ex-
pect that the FSF architecture can be used as a forecaster
to achieve predictive resource allocation in next-generation
networks for massive IoT.

Even though we have developed FSF in order to forecast
the traffic of individual IoT devices, we note that FSF is a
general architecture that can be applied to any forecasting
problem. In particular, whenever the number of data samples
is not sufficient for the Deep Learning-based forecasting
algorithms to converge, FSF provides a high-performance
solution that can only be approximated by the existing (fea-
ture selection, forecasting) method pairs. Fine-tuning the
hyperparameters of all of the feature selection methods and
the forecasters separately in order to find the best-performing
solution is an arduous task. FSF obviates this task by discov-
ering a high-performance solution automatically. As a result,
we expect that FSF will have an impact on multiple areas
beyond IoT.

In our future work, first, we shall examine how to reduce
the execution time of our FSF architecture. Second, we plan
to apply FSF to novel problems in next-generation predictive
networks. We expect that smart cities of the near future will
rely heavily on prediction in all layers of the communication
protocol stack as well as in providing network services to the
inhabitants of these cities. As a flexible, automatic, dynamic
forecasting architecture, we expect that FSF will emerge as a
key enabler of such predictive networking solutions.

APPENDIX.
PERFORMANCE COMPARISON WITH RESPECT TO THE
STEP-AHEAD PARAMETER
In this appendix, we show how forecasting error varies with
respect to K, the step-ahead forecasting parameter. We note
that the results that appear in Fig. 5, 6 and7 show the
forecasting error that has been averaged over the values of
K that appear in Tables 4,5, 6, respectively. The first column
of each of these tables displays the range of values of the
number of bits of traffic generated by each sensor, and the

number of samples. The second column shows the models,
and the remaining columns display the forecasting error for
the values of K in our measurements. The lowest value of
the forecasting error has been indicated in boldface for each
K. Our key observation is that FSF-MLP and FSF-LSTM
either have the lowest or close to the lowest forecasting
error across all schemes across all K over all of the data set
classes. Hence, we see that the main conclusion that we have
drawn in Section IV-D regarding the performance of our FSF
architecture holds not only with respect to the average of the
forecasting error over all K but also for each value of K in
the underlying set of results that led to that average.
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TABLE 4: CROSS-VALIDATION 1/2-sMAPE RESULTS FOR THE VBP DATA SETS

DATA SETS MODELS K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15

RH

1 kbit - 7 kbits

9357 samples

FSF-MLP 3.38 4.33 5.25 5.77 6.16 7.63 7.83

FSF-LSTM 3.43 4.89 6.74 7.06 7.82 7.94 8.88

MLP 5.24 5.99 6.50 6.93 7.15 8.00 8.75

LSTM 6.10 6.44 7.41 7.52 7.89 8.95 9.80

1D CNN 9.81 9.09 9.34 10.68 9.58 10.41 11.17

ARIMA 5.98 7.30 8.19 8.78 9.18 10.22 10.56

Linear Regression 3.50 4.76 5.68 6.30 6.75 7.94 8.43

ACF-MLP 5.23 6.02 6.78 7.49 7.70 8.65 8.84

ANOVA-MLP 5.76 6.29 6.89 6.98 6.96 7.96 8.83

RFE 3.23 4.73 5.76 6.48 6.98 7.93 8.44

Ridge 3.49 4.76 5.67 6.29 6.75 7.94 8.43

LDR

2 kbits - 1984 kbits

65535 samples

FSF-MLP 20.01 18.18 20.08 20.19 20.19 20.39 20.64

FSF-LSTM 19.45 19.59 21.29 18.16 19.86 21.05 20.84

MLP 27.14 22.63 21.09 23.53 24.04 21.92 22.45

LSTM 25.03 25.05 24.55 23.83 20.50 25.16 36.54

1D CNN 22.95 23.96 22.11 23.03 22.08 22.16 22.42

ARIMA 45.35 46.26 46.67 46.93 47.10 47.57 47.85

Linear Regression 74.59 75.52 75.65 75.97 76.11 77.08 77.69

ACF-MLP 20.92 21.21 23.53 23.53 21.23 21.27 21.80

ANOVA-MLP 42.31 40.17 39.90 25.48 41.21 21.57 21.52

RFE 70.23 70.12 70.59 71.19 71.02 72.28 72.58

Ridge 70.42 70.83 71.09 71.37 71.61 72.51 73.19

Water Level

6 kbits - 543 kbits

25000 samples

FSF-MLP 34.41 34.55 34.52 34.44 34.31 34.43 33.60

FSF-LSTM 35.16 34.06 34.04 33.92 34.35 34.35 34.34

MLP 35.88 35.67 36.72 34.96 35.83 35.96 37.80

LSTM 34.96 34.98 34.51 34.22 36.09 34.57 34.65

1D CNN 35.96 34.89 34.44 34.35 35.61 34.90 35.66

ARIMA 76.02 76.02 76.02 76.01 76.02 76.05 76.07

Linear Regression 76.20 76.21 76.21 76.21 76.21 76.22 76.22

ACF-MLP 34.35 34.34 34.35 34.35 34.35 34.34 34.34

ANOVA-MLP 34.34 34.34 34.34 34.34 34.35 34.34 34.34

RFE 76.20 76.20 76.21 76.21 76.21 76.22 76.22

Ridge 76.20 76.21 76.21 76.21 76.21 76.22 76.22
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TABLE 5: CROSS-VALIDATION 1/2-sMAPE RESULTS FOR THE VBA DATA SETS

Data Sets Models K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15

NO2

max. 6 kbits

2288 samples

FSF-MLP 18.24 24.81 27.72 29.31 30.84 33.30 33.57

FSF-LSTM 17.73 22.28 28.67 30.94 31.48 33.42 33.86

MLP 36.97 39.26 41.35 34.85 34.62 33.95 34.13

LSTM 19.96 27.30 24.24 30.42 31.82 32.73 37.48

1D CNN 44.08 34.14 43.11 36.97 35.63 36.19 33.99

ARIMA 81.15 82.77 83.57 84.02 84.31 85.10 85.60

Logistic Regression 32.45 34.98 34.61 34.41 33.95 34.08 33.92

ACF-MLP 33.86 33.86 33.85 33.84 33.85 33.87 33.87

ANOVA-MLP 19.74 25.90 29.58 29.74 31.74 32.52 33.70

RFE 32.96 34.85 34.54 34.37 34.25 34.06 33.98

Ridge 33.27 33.79 33.81 33.91 33.91 34.07 34.13

Temperature

max. 11 kbits

7371 samples

FSF-MLP 29.55 29.85 29.62 29.76 31.81 30.39 30.84

FSF-LSTM 29.08 28.94 29.55 29.48 29.53 30.40 31.00

MLP 38.15 39.04 39.83 32.48 34.70 33.91 36.18

LSTM 29.15 28.50 28.70 31.49 32.07 30.72 33.17

1D CNN 36.97 41.39 36.28 40.91 41.86 36.59 40.92

ARIMA 61.21 61.98 62.25 62.25 62.46 63.43 63.48

Logistic Regression 30.40 30.41 30.86 31.02 31.30 32.64 33.60

ACF-MLP 40.17 40.13 40.07 40.02 40.17 40.04 40.23

ANOVA-MLP 30.90 29.75 27.72 27.42 30.98 29.83 29.95

RFE 30.24 30.32 30.53 31.78 32.69 34.85 36.12

Ridge 31.96 31.99 32.22 32.40 32.63 33.621 34.53

Elevator Button

max. 34 kbits

40080 samples

FSF-MLP 12.96 12.96 12.99 13.08 13.08 13.25 13.20

FSF-LSTM 13.09 13.15 13.17 13.19 13.32 13.32 13.25

MLP 15.41 15.71 14.10 15.29 15.11 13.77 14.59

LSTM 13.22 13.15 13.43 13.85 13.39 13.51 13.42

1D CNN 16.91 16.28 15.65 16.96 14.65 15.69 13.74

ARIMA 29.83 30.17 30.55 31.24 31.66 32.97 33.85

Logistic Regression 12.84 12.98 13.04 13.12 13.19 13.36 13.45

ACF-MLP 13.51 13.48 13.47 13.39 13.43 13.46 13.47

ANOVA-MLP 12.80 13.06 13.09 13.25 13.88 13.35 13.39

RFE 12.84 12.97 13.07 13.12 13.20 13.41 13.49

Ridge 13.14 13.20 13.23 13.25 13.27 13.33 13.35
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TABLE 6: CROSS-VALIDATION MISCLASSIFICATION RESULTS FOR THE FBA DATA SETS

Data Sets Models K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15

NMHC

34 kbits

7715 samples

FSF-MLP 0.416 0.415 0.414 0.417 0.416 0.414 0.417

FSF-LSTM 0.413 0.412 0.412 0.412 0.413 0.413 0.412

MLP 0.462 0.414 0.412 0.417 0.421 0.417 0.412

LSTM 0.469 0.466 0.412 0.426 0.412 0.415 0.417

1D CNN 0.444 0.421 0.443 0.412 0.416 0.412 0.413

ARIMA 0.490 0.493 0.492 0.492 0.492 0.493 0.495

Logistic Regression 0.419 0.419 0.420 0.421 0.419 0.421 0.421

ACF-MLP 0.412 0.412 0.413 0.412 0.413 0.412 0.413

ANOVA-MLP 0.465 0.415 0.439 0.413 0.412 0.412 0.413

RFE 0.412 0.412 0.412 0.412 0.412 0.412 0.412

Ridge 0.417 0.417 0.417 0.417 0.417 0.417 0.418

Smart Home

Energy Generation

16 kbits

8692 samples

FSF-MLP 0.258 0.291 0.315 0.330 0.333 0.357 0.366

FSF-LSTM 0.258 0.297 0.315 0.324 0.338 0.360 0.363

MLP 0.332 0.3802 0.389 0.428 0.423 0.401 0.402

LSTM 0.272 0.367 0.331 0.352 0.377 0.379 0.379

1D CNN 0.448 0.448 0.402 0.425 0.444 0.402 0.436

ARIMA 0.268 0.319 0.341 0.352 0.359 0.371 0.376

Logistic Regression 0.258 0.296 0.319 0.334 0.343 0.362 0.369

ACF-MLP 0.411 0.403 0.408 0.408 0.402 0.401 0.402

ANOVA-MLP 0.282 0.315 0.334 0.369 0.376 0.378 0.382

RFE 0.255 0.299 0.313 0.326 0.335 0.353 0.359

Ridge 0.258 0.293 0.318 0.332 0.341 0.359 0.367

Wind Speed

64 kbits

25000 samples

FSF-MLP 0.356 0.360 0.358 0.357 0.359 0.364 0.365

FSF-LSTM 0.356 0.355 0.360 0.360 0.361 0.362 0.366

MLP 0.369 0.393 0.369 0.369 0.369 0.369 0.369

LSTM 0.272 0.367 0.362 0.352 0.377 0.371 0.379

1D CNN 0.402 0.379 0.387 0.379 0.369 0.405 0.369

ARIMA 0.390 0.389 0.389 0.389 0.387 0.380 0.378

Logistic Regression 0.354 0.357 0.358 0.359 0.361 0.365 0.368

ACF-MLP 0.369 0.369 0.369 0.369 0.369 0.369 0.369

ANOVA-MLP 0.373 0.359 0.374 0.371 0.377 0.376 0.369

RFE 0.352 0.352 0.354 0.356 0.357 0.368 0.368

Ridge 0.354 0.357 0.358 0.359 0.359 0.364 0.366
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