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Abstract in English

Implementing measurements on contemporary quantum computing devices is a
considerable challenge. This is primarily due to pervasive noise effects and the
constraints imposed by limited quantum resources such as the number of qubits
and available unitary operations. However, in a wide variety of use cases, the
complications engendered by these challenges can be reduced through the ap-
plication of supplementary classical resources (randomness and post-processing).
The principal hypothesis advanced in this dissertation contends that

Auxiliary classical resources can be used to assess and improve the
quality of the implementation of noisy quantum measurements

We offer contributions that aim to help better understand the effects of mea-
surement noise on the performance of quantum-information protocols, as well
as methods that reduce those effects. In Chapter 3 we introduce new distance
measures between quantum objects (in particular, quantummeasurements). We
call those measures quantum average-case distances (AC distances). AC dis-
tance between a noisy measurement and its ideal model allows for quantification
of the average-case performance of a noisy detector. The classical resource
exploited in this context is classical randomness. Specifically, the AC distance
between two measurements quantifies how well they can be statistically distin-
guished if we are given access to the random application of a certain class of
random quantum circuits (circuits forming unitary 4-designs).
While the AC distance can be used to quantify the quality of the measure-

ment’s implementation, it does not provide an explicit procedure to characterize
a given noisy measurement. We tackle this problem in Chapter 4, where we
provide an efficient method of reconstructing certain types of local measure-
ment noise from experimental data. The proposed method, Diagonal Detector
Overlapping Tomography (DDOT), also exploits classical randomness. More-
over, we show how to use the results of DDOT to reduce the effects of readout
noise on the estimation of marginal probability distributions. This is relevant, for
example, in the context of the estimation of energy of local Hamiltonians. Our
error-mitigation methods are classical in the sense that they are done entirely in
post-processing of the experimental data obtained in noisy experiments.
Many of the results across the Thesis are supported by extensive numerical

simulations. Furthermore, we present results of experimental implementation
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of noise characterization and mitigation on superconducting quantum hardware
from IBM and Rigetti (Chapter 4).

The thesis consists of the following works:

[1] Operational QuantumAverage-CaseDistances, F.B.Maciejewski, Z. Puchała,
M. Oszmaniec, Quantum 7, 1106 (2023).

[2] Exploring Quantum Average-Case Distances: Proofs, Properties, and Ex-
amples, F.B. Maciejewski, Z. Puchała, M. Oszmaniec, IEEE Transactions on
Information Theory, vol. 69, no. 7, pp. 4600-4619 (2023).

[3] Modeling andmitigation of cross-talk effects in readout noise with applica-
tions to the Quantum Approximate Optimization Algorithm, F.B. Maciejew-
ski, F. Baccari, Z. Zimborás, M. Oszmaniec, Quantum 5, 464 (2021).



Abstract in Polish

Implementacja pomiarów na współczesnych urządzeniach kwantowych stanowi
znaczące wyzwanie. Jest to w dużej mierze spowodowane wszechobecnym
wpływem szumu oraz ograniczeniami nałożonymi przez ograniczone zasoby
kwantowe, takie jak liczba qubitów i dostępne operacje unitarne. Jednakże,
w szerokim zakresie sytuacji, komplikacje wywołane przez te wyzwania mogą
zostać zredukowane poprzez zastosowanie dodatkowych klasycznych zasobów
(losowości oraz post-processingu). Główna hipoteza przedstawionaw tej dyser-
tacji brzmi

Dodatkowe zasoby klasyczne mogą być użyte do oceny i poprawy
jakości implementacji zaszumionych pomiarów kwantowych

Prezentujemy wyniki, które mają na celu lepsze zrozumienie wpływu szumu
pomiarowego na jakość implementacji protokołów informacji kwantowej, a także
metody redukcji tych efektów. W Rozdziale 3 wprowadzamy nowe miary dys-
tansumiędzy obiektami kwantowymi (w szczególności, pomiarami kwantowymi).
Nazywamy te miary kwantowymi average-case distances (odległości lub dys-
tanse AC). Dystans AC między zaszumionym pomiarem a jego idealną, teorety-
czną wersją, pozwala na kwantyfikację jakości nieidalnego detektora w średnim
(w sensie statystycznym) przypadku (stąd "average-case", czyli "średni przy-
padek/sytuacja"). Klasycznym zasobem wykorzystanym w tym kontekście jest
losowość. W szczególności, odległość ACmiędzy dwoma pomiarami określa jak
dobrze mogą być one statystycznie rozróżnione, jeśli mamy dostęp do losowej
implementacji pewnej klasy losowych obwodów kwantowych (obwody tworzące
tzw. "unitary 4-designs").
Mimo że odległość AC może być użyta do kwantyfikacji jakości implemen-

tacji pomiaru, nie dostarcza ona konkretnego protokołu jak scharakteryzować
dany nieidealny pomiar. Częściowe rozwiązanie tego problemu proponujemy
w Rozdziale 4, gdzie przedstawiamy wydajną metodę rekonstrukcji pewnych
typów lokalnego szumupomiarowego z danych eksperymentalnych. Proponowana
metoda,Diagonal Detector Overlapping Tomography (DDOT), wykorzystuje klasy-
czną losowość. Co więcej, pokazujemy jak użyć wyników DDOT do redukcji
efektów szumu pomiarowego na estymacjęmarginalnych rozkładów prawdopo-
dobieństwa. Jest to istotne, na przykład, w kontekście estymacji energii lokalnych
Hamiltonianów. Naszemetody redukcji błędów są klasyczne w tym sensie, że są
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wykonane całkowiciew post-processingu danych eksperymentalnych uzyskanych
w nieidealnych eksperymentach.
Wiele wyników w całej dysertacji jest wspartych przez obszerne symulacje

numeryczne. Ponadto, prezentujemy wyniki eksperymentalnej implementacji
charakteryzacji i mitygacji szumów na nadprzewodzących urządzeniach kwan-
towych od IBM i Rigetti (Chapter 4).

Dysertacja składa się z następujących prac:

[1] Operational QuantumAverage-CaseDistances, F.B.Maciejewski, Z. Puchała,
M. Oszmaniec, Quantum 7, 1106 (2023).

[2] Exploring Quantum Average-Case Distances: Proofs, Properties, and Ex-
amples, F.B. Maciejewski, Z. Puchała, M. Oszmaniec, IEEE Transactions on
Information Theory, vol. 69, no. 7, pp. 4600-4619 (2023).

[3] Modeling andmitigation of cross-talk effects in readout noise with applica-
tions to the Quantum Approximate Optimization Algorithm, F.B. Maciejew-
ski, F. Baccari, Z. Zimborás, M. Oszmaniec, Quantum 5, 464 (2021).
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1. Introduction

Since the dawn of civilization, humanity has been driven by a never-ending
quest to simplify complex calculations. Whether it was the early merchants of
Mesopotamia employing the abacus to keep track of trade, or astronomers in
Ancient Greece using geometric methods to predict celestial movements, the
necessity to facilitate easier and more efficient computation has been a recur-
rent theme throughout history [4; 5]. In the 20th century, the invention of the
electronic computer marked a monumental leap in our computational capabili-
ties. Gone were the days of laborious manual calculations. Scientists and en-
gineers harnessed the unprecedented power of classical computers to tackle
increasingly complex problems, from simulating weather patterns to decoding
the human genome.
It’s not an exaggeration to state that classical computing has, to a large de-

gree, shaped the world we inhabit today. A glance at modern society reveals the
ubiquitous influence of computing technology. Computers have transcended
the realm of specialized scientific computation to become an omnipresent com-
monality in daily life. Our personal computers and smartphones are descendants
of those early electronic machines, albeit miniaturized and exponentially more
powerful. They serve as gateways to an interconnected world, enabling instan-
taneous communication, access to vast repositories of human knowledge, and
the capacity for social interaction on an unprecedented scale.
Indeed, the advent of classical computing has propelled us into the realm of

what once seemed like science fiction. Perhaps one of the most important in-
ventions stemming from classical computing technology was announced a little
bit over a year two years prior to (finishing) the writing of this thesis – ChatGPT,
a chat-bot technology based on large language models technology [6]. For the
first time since the beginning of the human race, we can have a meaningful con-
versation with an entity that is not a member of our species. Despite multiple
pitfalls, including the fact that the conversations are not always really meaning-
ful, it is, arguably, a mark of the new era in the history of technology and perhaps,
civilization in general.
While classical computing is undoubtedly a very interesting topic, this thesis

is concerned with a conceptually distinct sub-field of information technologies
– quantum information science. Quantum computing, which can be considered
a subfield of general quantum information most relevant to this Thesis, is an en-
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1.1. Overview of classical and quantum computing 2

deavor with essentially the same overarching goal as classical computing – that
is, arguably, to make our lives better in the long term. However, it aims to do
so by using a set of very different (perhaps richer and more fascinating) set of
tools. The general hope of the scientists and engineers working in this field is
that some of the problems that are in practice intractable using known classical
methods might become feasible with sufficiently powerful quantum computers.
While there has been no convincing demonstration of useful quantum compu-
tation performed in experiments as of the writing of this Thesis, it is not impos-
sible that it will happen in our lifetimes (which we certainly hope for). At the
same time, even if it never happens, it would certainly still be worth pursuing.
Indeed, quantum information research has already been very fruitful, improving
our understanding of fundamental problems, such as the physics of information
processing [7; 8; 9; 10], the hardness of finding ground states of local Hamil-
tonians [11; 12; 13], the philosophy of quantum mechanics [14; 15; 16], and
more [17; 5]. In what follows we briefly outline the basics of classical and quan-
tum computing, and situate the contents of this Thesis within the broader context
of quantum information science.

1.1 Overview of classical and quantum computing

The fundamental concept of classical computing is a bit (short for binary digit) –
an abstraction for a basic unit of information that can exist in one of two states
conventionally denoted by 0 and 1. On a very high level, classical computing
can be viewed as a study of how to manipulate bits to perform calculations. The
textbook model for classical computation is a Turing machine [17]. A Turing
machine consists of an infinite tape with cells containing symbols; a tape head
that writes and reads from the tape, as well as has its own internal state; and
a set of rules specifying the head’s actions based on the current state of the
tape’s head and state on the tape to which the head is pointing. The original
motivation of Turing was to come up with a notion of a "definite procedure" that
can represent, in a rigorous manner, a set of steps to arrive at a solution of a
given problem [18]. While its historical relevance cannot be overstated (as it
laid the foundations for modern computer science), it is also a fairly academic
model that can be hard to operate with in practice.
An equivalent, useful representation of classical computation makes use of

classical circuits. A classical circuit is a diagram representation where multiple
wires represent bits, and various connectors between wires represent gates that
transform input bits into output bits. In particular, a (classical) logic gate is a func-
tion from {0, 1}k to {0, 1}l for k ≥ 1, l ≥ 1. Consider the NAND logic gate that
returns 0 only if both inputs are 1, and returns 1 otherwise. It turns out that the
NAND gate is universal for classical computation, meaning any {0, 1}k → {0, 1}l

function can be implemented using circuits containing only that gate (naturally,
different universal sets of logic gates exist). Importantly, an implicit assumption
here is that we can actually produce a description of such circuit in reasonable
(polynomial) time. Here, one typically considers so-called uniform circuit fam-
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ilies, meaning, roughly speaking, circuits that are an output of some algorithm
evaluated, e.g., on a Turing machine (and then focus on algorithms that produce
the circuit description in polynomial time). While exact details of defining/con-
structing such families are not important for us, it is worth noting that bounding
the size of circuits needed to compute some Boolean function can be used to
prove separation of computational complexity classes [5].
At the same time, the general idea of encoding a computation into a circuit

model is of particular relevance in the context of this thesis, as it was inherited
by the field of quantum information. The basic representation of the so-called
"gate-based" quantum computing paradigm uses quantum circuits [17]. Many
differences between classical and quantum computing are well illustrated by
studying the differences between the circuit representations of the two. The dia-
gram representing a quantum circuit has the same structure as a classical circuit,
but now wires correspond to qubits. A qubit (short for a quantum bit) is a fun-
damental concept of quantum information. Formally, in a noiseless computation
model, it is represented by a unit vector living in a two-dimensional vector space
equipped with an inner product (a Hilbert space). We therefore see that quantum
computing makes a significant conceptual jump by replacing binary digits with
continuously parametrized vectors. The input-output operations between qubits
are now quantum gates that are represented with unitary operators – bounded
operators on the Hilbert space that preserve the inner product; physically, this
represents a time evolution of a quantum system (generated by a Hamiltonian de-
scribing interactions within the system and between systems via the Schrödinger
equation) Finally, of particular importance in the context of this Thesis is the
fact that the quantum circuit ends in quantum measurement. Conceptually, a
quantum measurement can be thought of as a mapping from quantum states to
classical outcomes (formally, this particular concept is represented by so-called
quantum instruments, and we forget here about the post-measurement states).
The classical outcomes are represented, as in the case of classical computing,
via strings of symbols, usually bitstrings.
Indeed, while the processing of quantum information (the "computing" part)

happens in the Hilbert space by means of the transformation of many-qubit
states via quantum gates, the actual outcome of the computation is classical,
and accessed via a quantum measurement (the "readout" part). The famous dif-
ference between classical and quantum readout is that, in general, the quantum
measurement outcomes are probabilistic. This hints at the general difficulty of
designing quantum algorithms, where one needs to find ways of transforming
probabilities (or more strictly, probability amplitudes) in a way that will (most
likely) lead to an answer to the problem.
Quantum computers are thus machines comprised of qubits, which facilitate

the application of controllable unitary operations among these qubits, and enable
the extraction of classical information through quantum measurements. From
this perspective, quantum computers are devices that allow for sampling from
probability distributions across (typically exponentially large) sets of possible
outcomes. The overarching task of a quantum algorithm (or of the individuals
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developing such algorithms) is, broadly speaking, to engineer ways of obtain-
ing a probability distribution that is, vaguely speaking, concentrated around the
solution to the problem at hand.
An important obstacle that prevents the existing prototypes of quantum com-

puters (or, as we will often refer to them, the quantum devices) from performing
practically useful calculations is noise. In the case of classical computing, when
the bit-encoded information is physically transformed and stored, errors may
occur. The only possible states of bits are 0 and 1, thus the classical error to
consider is generally just a bitflip (a NOT gate; and we are disregarding here the
potential loss of bits). The task of preventing such classical errors from destroy-
ing the computation is the subject of classical error correction [17; 19]. Roughly
speaking, classical error correction uses redundancy to encode a single logical
bit into multiple physical bits, by means of error-correcting codes. Quantum er-
ror correction (QEC) uses similar notions (replacing bits with qubits), but now
the errors (and error-correcting codes) are more general because qubits are
more complex objects than bits. Fortunately, it turns out that the errors are not
infinitely more complicated (as might naively be expected when considering the
transition from classical binary digits to continuous quantum qubits) due to the
digitization of errors, i.e., the possibility to represent general quantum errors by
insertions of simple types of errors [20; 19]. One of the most important results
of quantum information theory is the threshold theorem that, roughly speaking,
asserts that if we can keep the physical error rate below some threshold value,
we can effectively suppress the logical errors arbitrarily by means of QEC.

1.2 Thesis context

While there are many possible definitions, let us say that the task of "quantum ad-
vantage" corresponds to implementing a useful computation on quantum hard-
ware faster than any existing classical algorithm. While there have been reports
suggesting the attainment of quantum advantage in specialized tasks – most no-
tably in the domain of random quantum circuit sampling (see, e.g., [21]) – the
field is yet to witness a compelling demonstration of quantum computing’s utility
in addressing problems of practical significance.
This is the context in which the research for this thesis was performed – quan-

tum devices have indeed transitioned from theoretical curiosity to tangible proto-
types. Yet those prototypes are moderate in size, the operations are very noisy,
and currently, no one has implemented a useful quantum computing task. At
the same time, existing quantum devices offer an incredible level of control for
quantum systems. What is particularly striking is the unprecedented ease of
access to the actual technology. Indeed, a lot of quantum computing technol-
ogy was developed in the past decade – and it seems that engineers embraced
the automation of classical control of those devices. For many existing architec-
tures developed by such manufacturers as IBM [22], Google [23], Rigetti [24],
IonQ [25], Quantinuum [26], all one needs to perform actual experiments is writ-
ing some Python code (and, usually, money to pay for it – with a commendable
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exception of IBM’s small size devices that are fully open-access for everyone
who registers [22]).
While in the long run, the threshold theorem provides theoretical justification

for the feasibility of fault-tolerant quantum computation, reaching the requisite
error thresholds at scale remains a formidable engineering challenge [27]. Mul-
tiple estimates on quantum error correction suggest we would need millions of
physical qubits to perform useful computation (there has been, however, a lot
of recent progress in that field, see, e.g., [28]). Where exactly are we today?
The biggest state-of-the-art quantum devices consist usually of hundreds of
qubits (some going to thousands) that are often very noisy. Since the technol-
ogy is currently nascent, the "quantum resources" (i.e., qubits, allowed quantum
gates, etc.) tend to be limited. This stage of development is usually referred to as
Noisy Intermediate-Scale Quantum (NISQ) devices [29]. However, the dawn of
the (very-) early fault-tolerant era (tens of error-corrected qubits) seems to be
on the horizon. Indeed, a cautious optimism is certainly warranted in light of the
enormous progress in small-scale experimental demonstrations of quantum er-
ror correction subroutines in recent years – see, e.g., [30; 31; 32; 33]. Notably,
in Ref. [33] (published in second half of 2024), the Google’s team achieved,
among other results, the milestone of extending the lifetime of a logical qubit by
a factor of over 2 compared to the underlying physical qubits .
The past few years have seen a rapid development of an intermediate ap-

proach to the problem of noise – quantum error mitigation (QEM) [34]. On the
one hand, the QEC usually aims to correct errors in real time to reduce (or ef-
fectively eliminate) logical error rates thanks to additional resources that include,
most notably, a lot of redundant qubits. On the other hand, the QEM is typically
concerned with constructing noise-reduced estimators of quantities of interest
(weak error-mitigation) or sampling fromnoise-reduced probability distributions
(strong error-mitigation) [35], exploiting very limited amounts of auxiliary quan-
tum resources (and plenty of cheap classical resources). It is worth noting that
even though the QEM subfield has been developingmainly in the context of near-
term, noisy devices, the general insights and methods related to noise character-
ization and mitigation will likely prove useful also in longer timescales. Indeed,
it is conceivable that the first useful quantum computation demonstrations (if
ever achieved) will be possible thanks to the application of some type of hybrid
QEM/QEC techniques (see, for example, Ref. [36]).
While QEM can be achieved in multiple ways [34], in this Thesis we focus

mainly on the application of additional classical resources to reduce errors. In
Chapter 4, based on Ref. [3], we present a method to efficiently characterize and
reduce the effects of themeasurement noise on various estimated quantities. We
introduce Diagonal Detector Overlapping Tomography (DDOT), a method that al-
lows to efficiently characterize a certain type of readout noise using O (log (n))
(with n being system size) calibration circuits. The classical resource exploited
in DDOT is classical randomness – a uniform random sampling from a set of very
simple quantum circuits is shown to, with high probability, allow characterization
of locally correlated measurement errors. The DDOT results can be used to cor-
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rect estimators of marginal probability distributions on local subsets of qubits –
in this case, the exploited classical resource is post-processing. Indeed, based
on the DDOT calibration results, we show how to reduce noise effects on the
estimators of marginals using very simple post-processing of the experimental
results.
In the earlier Chapter 3, based on Refs. [1] and [2], we show that the classical

randomness can play an important role in quantifying the quality of implementa-
tion of a given measuring device. In that Chapter, we introduce a novel distance
measure between quantum measurements (we also consider quantum states
and general quantum channels). This measure, the quantum average-case dis-
tance (quantumACdistance) between an ideal (theoretical) measurementmodel
and its noisy (experimental) implementation, quantifies the average-case perfor-
mance of a noisy detector. In particular, the AC distance between two measure-
ments quantifies how well they can be statistically distinguished if we are given
access to the random application of a certain class of random quantum circuits
(circuits forming an approximate unitary 4-design).
Based on the above, we can phrase the principal thesis of this dissertation

Auxiliary classical resources can be used to assess and improve the
quality of the implementation of noisy quantum measurements

It is important to note that the ideas revolving around exploiting classical re-
sources to aid quantum computation are prevalent across multiple sub-fields of
quantum information science. As indicated previously, parts of the quantum error
mitigation can, risking an oversimplification, be viewed as a study of how much
we can do given access to very limited additional quantum resources (usually
one considers gathering more samples, and rarely additional qubits), and a lot of
additional classical resources (such as cheap classical randomness and usually
cheap post-processing). This provides the context for Chapter 4 about read-
out error mitigation. On the other hand, we have Chapter 3 that introduces dis-
tance measures based, roughly speaking, on randomized measurement proto-
cols (note that also DDOT in Chapter 4 is based on an instance of such protocols).
This is in line with recent research directions that exploit randomized measure-
ments to perform efficient estimation (see, e.g., [37]); but also with so-called
quantum resource theories, where often classical operations are considered a
free resource and one studies a general structure of quantum sets augmented
with them (see, e.g., [38] in the context of quantum measurements).

1.3 Structure of the work

The research contained in this thesis revolves around the topic of making use of
the limited available quantum resources by augmenting them with cheap clas-
sical resources. We focus most of our attention on a particular part of every
quantum algorithm – quantum measurements. In Chapter 2, we provide a brief
description of the necessary theoretical background used later. The main body
of the thesis consists of three published works [1; 2; 3] that are presented in
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two main chapters. In Chapter 3, based on Refs. [1] and [2], we fill the void in
the distance measures’ literature to quantify the average-case performance of
measurements (but also states and channels) instead of the worst-case that was
typically considered. The average-case distances that we introduce correspond
to scenarios that exploit classical randomness in the implementation of quantum
algorithms. Then, in Chapter 4, we continue with studying noisy measurements
and introduce a new, scalable method for characterizing readout noise and re-
ducing its effects on the estimation of local quantum observables. The method is
tested both numerically and experimentally, and we report significant improve-
ments in the quality of the results. That chapter is based on Ref. [3]. We conclude
the Thesis with a summary and future research outlook in Chapter 5.



2. Theoretical background

2.1 Structure of the Chapter

In this Chapter, we present a very brief overview of the most relevant, in the
context of the main body of the Thesis, concepts from quantum information sci-
ence. This includes discussing the basics of a quantum-mechanical description
of physical systems in Section 2.2, followed in Section 2.3 by an overview of
noise modeling and noise mitigation. The emphasis is put on noisy measure-
ments, especially relevant in the context of Chapter 4 that present methods for
characterization and reduction of readout noise. In Section 2.4, we discuss the
commonly used distance measures between states, measurements, and chan-
nels. The worst-case nature of those measures is in contrast to the average-
case distances that are introduced in Chapter 3. Various proofs in Chapter 3 use
the concept of unitary designs, which are briefly described in Section 2.5. The
Chapter contains major excerpts from works [1; 2; 3].

2.2 Basics of quantum mechanics

We start by recalling basic quantum-mechanical concepts used throughout the
thesis [39; 17]. Wewill be interested in finite-dimensional physical systems. Ac-
cording to postulates of quantummechanics, a full description of any d-dimensional
system can be obtained by associating with it a d-dimensional Hilbert space
Hd ≈ Ã

d. The state of the system is then described by a quantum state ρ de-
fined as a positive-semi-definite operator with unit trace. The evolution of a
closed quantum system is described by a unitaryU generated by system Hamil-
tonian H via exp(−i tH) (where t ≥ 0). A general quantum measurement M is
represented by a Positive Operator-Valued Measure (POVM) [39]. A POVM M
with n outcomes on aHd is a set of positive-semidefinite operators that sum up
to identity, i.e.,

M = {Mi }
n
i , [i Mi � 0 ,

nÕ
i=1

Mi = É, (2.1)

where É is the identity operator.

8
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In a quantum computing context, a perfect measurement is often modeled as
a projective measurement P = {Pi }

r
i for which the measurement operators, in

addition to the requirements from Eq. (2.1), are also projectors, i.e., [iP 2

i
= Pi .

An important example of a measurement that will be useful throughout the thesis
is a computational-basis measurement defined as Mcomp = ( |1〉〈1| , . . . , |d〉〈d|)
(sometimes denoted simply as P if it is clear from the context what projective
measurement we mean).

2.3 Noise modeling and mitigation

2.3.1 Channels

When a physical system of interest is not isolated from the environment, its evo-
lution will, in general, not be governed by unitary evolution. Instead, it can be de-
scribed by a quantum channelΛ, defined as a linear CPTP (Completely-Positive
Trace-Preserving) map [17]. Trace-preserving condition means that for any
quantum state ρ,Λ (ρ) ∈ D(Hd), we have tr (Λ (ρ)) = tr (ρ). Complete-positivity
means that (Λ ⊗ Id′) ρ̃ ≥ 0 for any d′ and any ρ̃ ∈ D(Hdd′), where Id′ denotes
identity channel onHd′ . Quantum channel Λ is in one-to-one correspondence
to a Choi-Jamiołkowski state defined as JΛ B (Id ⊗ Λ) ( |Φ+〉〈Φ+ |), where we
extend Hilbert space by its copy and act with channel Λ on a half of the max-
imally entangled state |Φ+〉 B 1√

d

Íd
i=1 |i i 〉. We denote the set of all quantum

channels fromH to itself as CPTP(Hd). A unital quantum channels is a channel
Φ ∈ CPTP(Hd) such that Φ(τd) = τd, where τd is the maximally mixed state in
Hd.
Finally, when a quantum state ρ ∈ D(Hd) undergoes process Λ ∈ CPTP(Hd)

followed by measurement described by POVM M ∈ P(Hd, n), the probability of
outcome labeled as "i " is given by Born’s rule

Pr (i |ρ,Λ,M) = tr (Λ(ρ)Mi ) . (2.2)

Throughout the thesis, if Λ is an identity channel, we will omit it in the above
notation.

2.3.2 Readout noise

Quantum measurements can be represented as a special-case of a quantum
channel (quantum instruments), thus the relationship between an ideal measure-
ment P and its noisy implementationM, in general requires considering transfor-
mations between quantum channels (or superchannels/supermaps [40]). How-
ever, recently it has been experimentally demonstrated for superconducting quan-
tum devices that in practice this relationship, to a good approximation, can be
represented as a stochastic map [41; 42], which we will refer to as ’classical
measurement noise’. In such a model, the relation betweenM and P is given by
some stochastic transformation T. Namely, we have M = TP, i.e., Mi =

Í
j Ti jPj .

Due to the linearity of Born’s rule, it follows that probabilities pnoisy from which
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noisy detector samples are related to the noiseless probabilities pideal via the
same stochastic map, hence [42]

pnoisy = Tpideal . (2.3)

Specifically, in the convention where probability vectors are columns, the noise
matrixT is left-stochastic, meaning that each of its columns contains non-negative
numbers that sum up to 1. Such noise is thus equivalent to a stochastic process,
in which an outcome from a perfect device probabilistically changes to another
(possibly erroneous) one.
As mentioned above, Eq. (2.3) does not present the most general model of

quantum measurement noise. Specifically, coherent errors might occur, and re-
duce the effectiveness of error-mitigation (a detailed analysis of this effect was
presented in [42]). This type of noise will not be analyzed in this thesis.
Note that in the above discussion, we denoted ideal measurement as P, indi-

cating that in many quantum-information protocols the model for ideal measure-
ment is indeed some type of projective measurement.

2.3.3 Noise mitigation

We now note that the equation (2.3) suggests a simple way to mitigate errors on
the noisy device – via left-multiplying the estimated statistics by the inverse of
noise matrix T−1 [41; 42]. From the stochasticity of T it follows that its inverse
does preserve the sum of the elements of probability vectors, however it may
introduce some unphysical (i.e., lower than 0 or higher than 1) terms in the cor-
rected vector. A common practice in such a scenario is to solve an optimization
problem

p = argminq | |q − T−1pnoisy | |22 , (2.4)

whereminimization goes over all proper probability distributions. This introduces
additional errors in the final estimations which can be upper-bounded [42].
We note that the task of error mitigation is more general than just correcting

noisy measurements and there exist a plethora of methods to obtain either sam-
ples from corrected probability distributions ("strong error-mitigation" [35]), or
construct error-mitigated estimators of observables ("weak error-mitigation") –
see, e.g., [34] for an overview of various techniques. In the context of this the-
sis, the above simple readout error mitigation is of interest and will be expanded
upon in Chapter 4.

2.4 Worst-case distance measures

Having two quantum objects – for example, ideal implementation of a quantum
measurement, and its noisy, experimental version – it is useful to have a way to
quantify their (dis)similarity. Having this in mind, we will now discuss commonly
used distance measures.
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(a) Trace distance between
quantum states.

(b) Operational distance
between POVMs.

(c) Diamond distance be-
tween quantum channels.

Figure 2.1: Depiction of measures of distance between quantum objects based on op-
timal statistical distinguishability – which can be also interpreted as "worst-case" dis-
tance. For quantum states (2.1a), we optimize over all POVMs, while for measurements
(2.1b) we optimize over all states. For quantum channels (2.1c) we optimize over both
states and measurements on the extended Hilbert space.

The distances of interest will be induced by the following norms. Denote by
L (Hd) a space of linear operators onHd. Then for A ∈ L (Hd), the trace norm is
defined as

| |A | |1 = tr
(p

AA†
)
. (2.5)

For a channel Λ ∈ CPTP(Hd), the diamond norm is defined through optimization
of a trace norm as

| |Λ | |⋄ = max
A∈L (Hd2 ), | |A | |1≤1

| | (Λ ⊗ Id) A | |1 . (2.6)

Total-Variation Distance between two probability distributions p = {pi }
n
i=1

and q = {qi }
n
i=1 is defined by

TV (p, q) =
1

2

nÕ
i=1

|pi − qi | . (2.7)

The TV distance quantifies the maximal statistical distinguishability of p and q.
Specifically, in a task when we are asked to decide whether the provided sam-
ples come from p or q (where both are promised to be given with probability 1

2
),

the optimal success probability (i.e., probability of correctly guessing using the
best possible strategy) is 1

2
(1 + TV (p, q)) [17]. In quantummechanics, the anal-

ogous task is to distinguish between two quantum objects, which can be either
states, measurements, or channels (and, again, both are promised to be given
with probability 1

2
), provided samples from the probability distributions that the

objects of interest generate (via Born’s rule, Eq. (2.2)). In all cases, the optimal
success probability of performing this task is related to the optimal (maximized)
TV distance between relevant probability distributions. This success probability
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is given by similar formula 1

2
(1 + d (α1, α2)), where α1 and α2 denote two ob-

jects to be distinguished, and the distance d (. , .) depends on the scenario. In
Fig. 2.1, we pictorially represent the most important distances based on optimal
statistical distinguishability.
In the task where we want to distinguish between quantum states ρ and σ ,

we optimize over measurements (POVMs) performed on them, and the relevant
distance is trace distance defined as [17]

dtr (ρ,σ) = sup
M∈P(H)

TV
(
pρ,M, pσ,M

)
=

1

2
| |ρ − σ | |1 , (2.8)

where by pρ,M we denote probability distribution obtained via Born’s rule when
measurementM is performed on state ρ. In this case, the optimal measurement,
known as Helstrom’s measurement, is projective with 2 outcomes [43].
In the case of quantum measurements, we want to decide whether the mea-

surement performed is a POVMM or N, and we are optimizing over input states.
The relevant distance is so called operational distance defined as [44; 45; 46]

dop (M,N) = sup
ρ∈D(H)

TV
(
pρ,M, pσ,N

)
. (2.9)

Finally, for distinguishing between two quantum channels Λ and Γ , we are
optimizing over both input states (with ancillae) and measurements. In this case,
the relevant distance is known as diamond distance defined as [17]

d⋄(Λ,Γ ) = sup
ρ∈D(H⊗2), M∈P(H⊗2)

TV
(
pρ,Λ,M, pσ,Γ ,M

)
, (2.10)

where we extended channel Λ ⊗ Id via identity channel Id acting on ancillary
system. While for the above distance, we do not have a simple expression as
a function of underlying objects, its calculation can be formulated as an SDP
program that can be efficiently computed for moderate system sizes [47].
Note that in each case, the statistical distinguishably of two objects of in-

terest is maximized. Thus, in the use-case where one of the objects is target
implementation, and the second is its noisy version, the distances above cor-
respond to worst-case performance of the given object. For example, in the
case of a noisy measurement, the worst-case operational distance corresponds
to an input quantum state that is the worst possible in terms of distance from
ideal, noiseless statistics. In Chapter 3, we will propose and study new types of
distances that, in contrast, quantify the average-case performance.

2.5 Unitary designs

In Chapter 3, we will be interested in expected values (integrals) Å
β∼ν

f (β ) =

´

U(H) dν (β )f (β ) of a random variable f with respect to measure ν defined on
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unitary group U(H). The measure ν on unitary group induces measure on the
set of pure quantum states in the following way – choose arbitrary fixed state
ψ0 and apply to it unitary U ∼ ν drawn from measure ν, obtaining random state
ψ = Uψ0U

†. In short, we denote ψ ∼ νS. The unique left-and right-invariant
probability measure on U(H) is known as the Haar measure [48] and it will be
denoted as µ. Random states obtained from the induced measure on states are
called Haar-random states and the corresponding measure will be denoted by
µS .
Instrumental in our considerations, will be the notion of (approximate) unitary

4-designs. Unitary k-designs are, by definition, measures on U(H) that repro-
duce averages of Haarmeasure µ on balanced polynomials of degree k in entries
ofU [49]. For approximate k-designs these averages agree only approximately,
and the quantitative notion of approximation can be defined differently (see, e.g.,
[50]). Here we adapt the notion of approximation based on the diamond norm.
We say that a measure ν on U(H) is δ-approximate k-design if

��Tk ,ν − Tk ,µ
��
⋄ ≤ δ , (2.11)

where Tk ,ν is the quantum channel acting onH⊗k defined as

Tk ,ν (ρ) =

ˆ

U(H)
dν (U )U ⊗k ρ (U †)⊗k . (2.12)

An important example of approximate k-designs are the 1D architecture random
quantum circuits formed from arbitrary universal gates that randomly couple
neighboring qubits. These easy-to-implement circuits approximate k-designs
efficiently with the number of qubits N [51; 52; 53? ]. In particular, it has been
recently shown [54] that δ-approximate 4-designs are generated by circuits of
depth O

(
log

(
N
δ

) )
with architecture as simple as 1D line, with moderate numeri-

cal constants (see Appendix B of [54] for the exact scaling).



3. Operational Quantum Average-Case Distances

3.1 Chapter overview

3.1.1 Summary in the context of the thesis

In the quest to facilitate robust execution of quantummeasurements, it is impera-
tive to assess the quality of implementation itself. To that end, reliable measures
of quality are needed. In this Chapter, we introduce novel metrics for the distance
(quantum Average-Case distances, or simply AC distances) between quantum
objects (states, measurements, and channels) that have a sound operational in-
terpretation - they quantify the average-case statistical distinguishability of two
objects, where the average is taken over randomquantum circuits. From the point
of view of assessing the measuring device’s quality, the AC distance between
the ideal measurement and its noisy (experimental) version may be interpreted
as quantifying an average-case performance of the noisy measurement. From
a fundamental perspective, it allows us to quantitatively assess how protocols
involving random quantum circuits can perform in the task of distinguishing be-
tween two measurements.
The chapter is based onworks [1; 2] co-authored by the author of this Thesis.

The chapter contains large excerpts from both publications, with edits necessary
to adjust them for the format of a Ph.D. thesis.

3.1.2 Technical abstract

We introduce distance measures between quantum states, measurements, and
channels based on their statistical distinguishability in generic experiments. Specif-
ically, we analyze the average Total Variation Distance (TVD) between output
statistics of protocols in which quantum objects are intertwined with random cir-
cuits and measured in a standard basis.
We prove that once a family of random circuits forms an δ-approximate 4-

design, with δ = o (d−8), then the average-case distances can be approximated
by simple explicit functions that can be expressed via simple degree two polyno-
mials in objects of interest. For systems of moderate dimension, they can be eas-
ily explicitly computed – no optimization is needed as opposed to diamond norm
distance between channels [47] or operational distance betweenmeasurements
[45]. We prove that those functions, which we call quantum Average-Case Dis-

14
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tances, have a plethora of desirable properties, such as subadditivity w.r.t. tensor
products, joint convexity, and they respect (a certain form of) data-processing
inequalities. Notably, all distances utilize the Hilbert-Schmidt (HS) norm, which
provides this norm with a new operational interpretation. We also provide upper
bounds on the maximal ratio between worst-case and average-case distances,
and for each of them, we provide an example that saturates the bound. Specifi-
cally, we show that for each dimension d this ratio is at most d

1

2 , d , d
3

2 for states,
measurements, and channels, respectively.
To support the practical usefulness of our findings, we apply them to analyze

the effects of noise in quantum advantage experiments and for efficient discrim-
ination of high-dimensional states and channels without quantum memory. We
argue that AC distances are better suited for assessing the quality of NISQ de-
vices than common distance measures such as trace distance or the diamond
norm. We support those claims by performing numerical simulations that com-
pare worst-case and average-case distances in practically-inspired scenarios.

3.2 Introduction

The question of how far away are two quantum objects (states, measurements,
or channels) is of both fundamental and practical importance. That question is
often phrased in terms of the statistical distinguishability of probability distribu-
tions corresponding to two objects in question (which is a problem of classical
hypothesis testing [17]). Indeed, the most common distances, such as trace
distance or diamond norm distance, are based on optimal protocols for such
statistical discrimination. However, those protocols have limitations. In general,
they might require a lot of resources (e.g., high-depth circuits) [55], thus they
are not necessarily practical. Another perspective on the limitations of common
distance measures comes from a study of noise on quantum devices. A distance
between a theoretical (ideal) model of an object in question, and a model for its
experimental (noisy) implementation, can be used to study the potential effects
of experimental imperfections on the protocol one wishes to implement. When
that is the case, the distances based on optimal state/measurement/channel dis-
crimination inform about the worst-case performance of a protocol. However, in
practice, one does not necessarily expect the worst-case to be representative
of a typical device’s performance.
With thismotivation inmind, we propose distancemeasures of distance based

on average statistical distinguishability using random quantum circuits. Opera-
tionally, if the average-case distance between a pair of quantum objects is sig-
nificant, this implies that they can be (statistically) distinguished almost perfectly
using just a few implementations of random circuits. This provides a natural in-
terpretation analogous to conventional distances, but we consider averages over
random circuits instead of optimal scenarios. Such quantifiers can be more suit-
able for studying the performance of NISQ devices’ performance than the above-
mentioned conventional distances quantifying worst-case performance. In par-
ticular, one of the most promising near-term applications of quantum computing
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are hybrid quantum-classical variational algorithms [56], such as Quantum Ap-
proximate Optimization Algorithm (QAOA) [57; 58; 59] and Variational Quantum
Eigensolver (VQE) [60; 61; 62]. Since NISQ devices are expected to suffer from
a significant amount of noise, it is instrumental to understand how it can affect
such algorithms (see, e.g., [63; 64; 65; 66]). Our distancemeasuresmight prove
particularly useful in this context because, as explained later, the random circuits
we consider form unitary designs. Recently it was realized that circuits appearing
in variational algorithms are expected to have, on average, design-like proper-
ties. Thus we expect quantum average-case distances to be a good metric to
quantify the average performance of such algorithms [67].

3.2.1 Summary of results

In this chapter, we study the average Total-Variation (TV) distance between
measurement outputs (statistics) of two quantum processes, in which quantum
objects of interest are intertwined with random quantum circuits. TV distance
is well known to quantify the statistical distinguishability of two probability dis-
tributions. However, in general, since TV distance is not a polynomial function
of underlying probability distributions, the relevant averages are hard to calcu-
late. To tackle that problem, we derive lower and upper bounds for average
TV distance and show that both bounds differ only by dimension-independent
constants. The derivation of upper bounds requires the calculation of 2nd mo-
ments of quantities of interest, and lower bounds are derived using 2nd and 4th
moments. Formally, this means that to get both upper and lower bounds, the
random circuits must form an approximate 4-design. Importantly, our results are
valid also for any (approximate) k-design with k ≥ 4. We note that a particular
choice of 4-designs is of purely technical origin – as remarked above, our proof
techniques require 4th-degree polynomials to get lower bounds on average TV
distance, while for upper bounds already 2-designs suffice.
The existence of the above bounds implies that for a broad family of random

quantum circuits, the average TV distance is approximated, up to the known rel-
ative error, by a simple explicit function (2nd-degree polynomial) of the objects
that we wish to compare (states, measurements, or channels). These functions,
the quantum average-case distances, define bona fide distance measures with
multiple desired properties, such as subadditivity w.r.p. to tensor products, joint
convexity, or (restricted) data processing inequalities. Notably, all of the dis-
tances utilize the Hilbert-Schmidt (HS) norm in some way which provides it with
a new operational interpretation.
Finally, so-defined quantum average-case distances have sound operational

interpretation. Namely, if a TV distance is bounded from below by a constant
c (here proportional to quantum average-case distance), then there exists a
strategy that uses random circuits which distinguishes between two objects with
probability at least 1

2
(1 + c) in single-shot scenario (we note that we do not at-

tempt to provide constructions of such strategies, thus it’s purely an existence
statement). Thus from Hoeffding bound, it follows that having access to multi-
ple copies (samples) allows one to exponentially quickly approach the success
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probability of discrimination equal to 1 using a simple majority vote.

3.2.2 Related works

Let us now comment on some of the commonly used distances. The study of
similarity measures between quantum objects has a long history [17; 68], and
thus there are a lot of different metrics currently used in the field. Some of the
most popular distances are based on the optimal statistical distinguishability of
quantum objects – this includes trace distance between states [69], the opera-
tional distance between measurements [45], as well as diamond norm distance
between channels [69]. While in those distances the optimization is done over
all possible operations, there has been an interest also in distinguishability un-
der restricted sets of operations – such as local POVMs for discrimination of
quantum states [70; 71]. Recently, a quantum Wasserstein distance of order 1
was proposed as a measure of distance between quantum states. It generalizes
a classical Wasserstein distance based on the Hamming weight and captures
the notion of similarity of quantum states based on differences between their
marginals [72].
For quantum states, the other very common similarity measure is quantum fi-

delity, which induces distance between states known as Bures distance [73; 74].
When one wants to compare unitary channel (quantum gate) with a general
channel (noisy implementation of a gate), the relevant notions are worst-case
[17] and average-case gate fidelity [75; 76; 77; 78; 79]. In both cases, the rel-
evant optimization/averaging is over all quantum states. For distance measures
between measurements, one of the natural choices is to treat measurement as
a quantum-classical channel and compute diamond norm distance [45; 46]. In
the context of detector tomography sometimes fidelities between theoretical and
experimental POVM’s elements were considered [80; 81; 82]. When the target
measurement is a computational basis, it is customary to use single-qubit er-
ror probabilities as a simplified quantifier of measurement’s quality [21]. See
[68] for an extensive overview of distinguishability measures between quantum
objects.
The distance measures introduced by us rely on random quantum circuits

which have many applications in the context of practical quantum computing. A
notable example is shadow tomography, where random circuits are exploited to
estimate multiple properties of quantum states with relatively low sample com-
plexity [83; 84; 85; 86; 87]. Another example are generalizations of the classical
randomized-benchmarking scheme [88; 89; 90; 91] that use random circuits to
estimate averaged quality metrics of quantum gates [92; 93; 94].
In Ref. [49] the authors prove that two states distant in Hilbert-Schmidt norm

can be distinguished by a POVM constructed from approximate 4-design. Our
proofs concerning average TV distances for quantum states and measurements
were inspired by the proofs therein. In Ref. [95] the authors derived lower bounds
(also containing HS distance) for TV distance in the same scenario for Haar-
random POVMs, investigating applications for hidden subgroup problems. In
Ref. [96] the "total operational distance" between states was introduced. It is
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based on the differences in obtained statistics when one performsmutually com-
plementary projective measurements (known more commonly as mutually unbi-
ased bases [97]). Importantly, the authors show that such distance is equivalent
to HS distance between states of interest.

3.2.3 Main applications overview

Let us now briefly review the two main practical applications of our results that
we study in detail in Section 3.5.

Noise in quantum advantage based on random circuits sampling

Multiple recent quantum advantage proposals are based on random circuits sam-
pling [21; 98]. We apply our findings to understand the effects of noise on such
protocols. We approach the problem from two sides. First, the ACdistances allow
to easily lower bound the average-case TV distance between the noisy distri-
bution and the ideal distribution, thus giving insight into how well separated, on
average, are noisy distributions from target distributions. Second, AC distances
allow to upper bound the average-case TV distance between a noisy distribution
and a (trivial) uniform distribution. This allows us to study how quickly the noise
makes the average distribution useless. For example, we show that even in the
absence of gate and state-preparation noise, a local, symmetric bitflip error in
measurements causes the noisy distribution to approach trivial one exponentially
quickly in system size.

Randomized protocols for distinguishing quantum objects

Recently there has been a lot of interest in algorithms that use randomized quan-
tum circuits, such as shadow tomography [83; 84; 85; 86; 87] and randomized-
benchmarking [88; 89; 90; 91; 92; 93]. Our results can be employed to quantify
the performance of randomized algorithms in the task of statistical distinguisha-
bility of quantum objects. Namely, if the average-case distance between a pair
of quantum objects on N qubit systems is large, then they can be (statistically)
distinguished almost perfectly using a randomized protocol with just a few im-
plementations of local random circuits of depth O (N ). We observe that such
behavior takes place in two scenarios related to those recently analyzed in the
context of so-called Quantum Algorithmic Measurement [99] and complexity
growth of quantum circuits [55]: (i) distinguishing Haar random N qubit pure
state frommaximally mixed state and (ii) distinguishing N qubit Haar random uni-
tary from maximally depolarizing channel. This shows that protocols employing
random circuits can be used to efficiently discriminate quantum objects. Since
they do not depend on the objects to be distinguished, randomized measure-
ment schemes can be interpreted as "universal discriminators", analogous to
the SWAP test but not requiring the usage of entanglement or coherent access
to copies of quantum systems.
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3.2.4 Structure of the chapter

In Section 3.3we define the average Total-Variation distance between two states,
measurements, and channels. We also outline the general methodology of the
proofs presented in the main section of this chapter – Section 3.4, in which
we prove that the average Total-Variation distances between quantum objects
can be approximated by explicit functions of the objects in question – quantum
states in Theorem 1 (Section 3.4.1), quantummeasurements in Theorem 2 (Sec-
tion 3.4.2), and quantum channels in Theorem 3 (Section 3.4.3). Those func-
tions are what we call quantum average-case distances. The main section is
followed by Section 3.5 in which we discuss in detail the most interesting appli-
cations of AC distances (summarized already above in Section 3.2.3). This in-
cludes results of extensive numerical simulations in Section 3.5.4. In Section 3.6
we prove that quantum average-case distances possess a variety of desired
properties, such as subadditivity, joint convexity, and restricted data-processing
inequalities – summarized in Table 3.1 for states, Table 3.2 for measurements,
and Table 3.3 for channels. In this section, we also prove asymptotic separations
between average-case and worst-case distances, together with examples that
saturate derived bounds. In Section 3.7 we study exemplary scenarios where
quantum average-case distances can be calculated analytically. We also show
that average-case distances can be used to study the average convergence
of noisy distribution to uniform (trivial) distribution, a property that was crucial
to studying some of the practical applications in Section 3.5. We conclude the
Chapter with Section 3.8 where we summarize our contributions.

3.3 Methodology

The goal of this section is to provide an overview of the general setup and a proof
methodology for the main results of this work that are presented in Section 3.4.

3.3.1 Average Total Variation distances

Wewill be interested in establishing bounds for average Total-Variation distance
between probability distributions generated by two quantumobjects (states, mea-
surements, or general channels). The average will be taken over an ensemble
of random circuits. These notions are represented pictorially in Fig. 3.1, and we
will now formally define them.
Consider a general quantum protocol that consists of a state preparation, an

evolution of the system, and a quantummeasurement. Nowwe consider average
Total-Variation distance between two quantum objects:

1. (States) Two quantum states ρ,σ ∈ D(H) are fixed, rotated by a random
unitary, and measured in the computational basis. Let us denote by pρ,U

probability distribution obtained in this process, i.e., pρ,U
i

= tr
(
|i 〉〈i |UρU †

)
.
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(a) Quantum states. (b) Quantum measure-
ments.

(c) Quantum channels.

Figure 3.1: Measures of distance between quantum objects based on average statis-
tical distinguishability. For quantum states (3.1a), we take the average over random
unitaries applied to the state, followed by measurement in a standard basis. For quan-
tum measurements (3.1a), we take the average over random pure states measured on
the detector. Finally, for quantum channels (2.1c) we take the average over random
input states, and random unitaries applied after the action of the channel. Note the
difference with Fig. 2.1, where for common distance measures the optimal protocol is
chosen, while here we consider random protocols.

The average TV distance between ρ and σ is

TVav (ρ,σ) B Å
U∼ν
TV

(
pρ,U , pσ,U

)
. (3.1)

2. (Measurements) Two n-outcome quantum measurementsM,N ∈ P(H , n)
are fixed, while states are taken to be random. Let us denote by pM,ψV

probability distribution obtained in this process, i.e., pM,ψV

i
= tr

(
MiVψ0V

†
)
,

where ψ0 is a fixed pure state. The average TV distance betweenM and N
is

TVav (M,N) B Å
V∼ν
TV

(
pM,ψV , pN,ψV

)
. (3.2)

3. (Channels) Two quantum channels Λ,Γ ∈ CPTP(H) are fixed. The input
state is taken to be a random pure state Vψ0V

† for fixed ψ0. The output
state is rotated by independent random unitary U (hence we have random
unitary rotations before and after the application of a channel), followed by
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measurement in a standard basis. Let us denote by pΛ,ψV ,U probability dis-
tribution obtained in this process, i.e., pΛ,ψV ,U

i
= tr

(
|i 〉〈i |UΛ

(
Vψ0V

†
)
U †

)

The average TV distance between Λ and Γ is

TVav (Λ,Γ ) B Å
U∼ν

Å
V∼ν
TV

(
pΛ,ψV ,U , pΓ ,ψV ,U

)
. (3.3)

Remark 1. If the average TV distance is bounded from below by a constant
c, then there exists a strategy that uses random circuits which distinguishes be-
tween two objects with probability at least 1

2
(1+c) in single-shot scenario. Thus,

by the virtue of Hoeffding’s inequality, having access to s copies (samples) gives

an error probability of the majority vote strategy dropping as 2 exp(−c2

2
s). We

note that while the lower bound implies existence of such strategy, it does not
tell what is the exact protocol for realizing this success probability.

Remark 2. The value of the average TV distance for quantum states can be rein-
terpreted as TV-distance of output statistics resulting from a measurement of a
single POVM with effectsMi ,Uj

= νjU
†
j
|i 〉〈i |Uj , where νj is the probability of oc-

currence of circuitUj in the ensemble ν (for simplicity of presentation we assume
that ensemble ν is discrete). This POVM can be interpreted as a convex com-

bination [100] of projective measurements MUj with effects M
Uj

i
= U

†
j
|i 〉〈i |Uj .

Analogous interpretation holds also for the average TV distances for quantum
measurements and channels – they can be interpreted as TV distances between
output statistics of the corresponding randomized protocols [49]. Recall from
Remark 1 that a lower bound on average TV distance implies that such ran-
domized protocol distinguishes between quantum states with high probability.
We note that it immediately follows that there also exists a deterministic (i.e.,
requiring implementation of a single quantum measurement, for example, via
Naimark’s dilation [101], as opposed to randomized implementation of multi-
ple measurements) optimal distinguishability protocol that achieves the same
success probability (the value of which depends on the states in question).

3.3.2 Auxiliary lemmas

We will later be interested in bounding from below and from above the expected
values of some random variables. In bounding from above, we will use the fol-
lowing

Lemma 1. (Jensen’s inequality [102]) Let f be a concave function, and X be a
random variable. Then we have

f
(
ÅX

)
≥ Åf (X ) .

On the other hand, in bounding from below, we will use the following
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Lemma 2. (Berger’s inequality [103]) Let X be a random variable with well-
defined second and fourth moments. Then we have

(Å[X 2])
3

2

(Å[X 4])
1

2

≤ Å|X | . (3.4)

We will also make use of the following auxiliary lemmas.

Lemma 3 (Auxiliary integral involving k-th moment [104, Prop. 6]). Let X ∈
Herm((Hd)

⊗k ) and µ be a Haar measure. Then we have

Å
U∼µ
tr
(
U ⊗k |i 〉〈i |⊗k (U †)⊗kX

)
=

1
(d+k−1

k

) tr
(
Ð
(k )
symX

)
, (3.5)

where Ð(k )
sym is the projector onto k-fold symmetric subspaceH

(k )
sym ⊂ H⊗k

d .

Corollary 1 (Auxiliary integral for 2nd moment). Let X ∈ Herm(Hd). Then we
have

Å
U∼µ
tr( |i 〉〈i |UXU †)2 =

1

d (d + 1)

(
tr(X 2) + tr(X )2

)
. (3.6)

Proof. The above identity follows from Lemma 3. We use the identities Ð(2)
sym =

1

2
(É ⊗ É + Ó) and tr(Óρ ⊗ ρ) = tr(ρ2), where Ó denotes the swap operator acting
onH⊗2. �

Lemma 4 (Lemma 2 from [105]). Let X ∈ Herm(H) . Let Ð(k )
sym denotes orthog-

onal projector onto k-fold symmetrization of H (k )
sym ⊂ H⊗k . We then have the

following inequality

tr
(
X ⊗4

Ð
(4)
sym

)
≤ C tr

(
X ⊗2

Ð
(2)
sym

)2
, where C =

10.1

6
. (3.7)

Finally, the following Lemma5, proved in Appendix A.1, generalizes Lemma4
and can be of independent interest. This result will be instrumental in proofs re-
garding average-case distances between quantum channels.

Lemma 5 (Inequality involving two operators and projections onto 2-fold sym-

metric subspaces). Let X ,Y ∈ Herm(H). Let Ð(k )
sym denotes the orthogonal pro-

jector onto k-fold symmetrization of H (k )
sym ⊂ H⊗k . We then have the following

inequality

tr
(
X ⊗2 ⊗Y ⊗2

Ð
(4)
sym

)
≤ C tr

(
X ⊗2

Ð
(2)
sym

)
tr
(
Y ⊗2

Ð
(2)
sym

)
, where C =

13

6
. (3.8)

Remark 3. Note that the constant appearing on the right-hand side of (3.8) is
slightly worse than the one from (3.7).
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Figure 3.2: Illustration of the general setup we consider in this work. Two quantum
objects α1, α2 that can be either quantum states, measurements, or channels, are sur-
rounded by random circuits β drawn from a probability measure ν.

3.3.3 General methodology of proofs

Consider a general quantum protocol that results in probability distribution pα ,β

where α denotes a fixed quantum object (state, measurement, or channel), and
β is a random variable (usually specifying quantum circuit) distributed according
to a probability distribution ν (typically Haar measure, approximate k-design, or
random instances of variational circuits). See Fig. 3.2 for illustration. We will be
interested in bounding quantities of the type

TVav(α1, α2) B Å
β∼ν
TV(pα1,β , pα2,β ) . (3.9)

For example, in the case of the distance between quantum states, α would cor-
respond to two fixed quantum states that we want to calculate the distance
between, and β would correspond to random quantum measurements (as in
Eq. (3.1)).
To estimate TVav(α1, α2) from above we first expand

Å
β∼ν
TV(pα1,β , pα2,β ) =

1

2

nÕ
i=1

Å
β∼ν

|p
α1,β

i
− p

α2,β

i
|, (3.10)

and use Jensen’s inequality (see Lemma 1) for the concave function f (x ) =
√
x

to upper bound the average of each of the summands

TVav(α1, α2) ≤
1

2

nÕ
i=1

r
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2 . (3.11)

To establish a lower bound for TVav(α1, α2) we will apply Berger’s inequality
(see Lemma 2) to random variables xi = p

α1,β

i
− p

α2,β

i
and insert the obtained

result to (3.10). Importantly, in Section 3.4 it will turn out that for probabilities
and measures involved in our considerations, we will have

Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)4 ≤ C

[
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2
]2
, (3.12)
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where C > 0 is a constant independent of the dimension of the Hilbert space
or the number of measurement outcomes. This fact, together with Berger’s in-
equality (Eq. (3.4), yields the bound

1

C 1/2

1

2

nÕ
i=1

r
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2 ≤ TVav(α1, α2) . (3.13)

Therefore, we have

1

C 1/2

1

2

nÕ
i=1

r
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2 ≤ TVav(α1, α2) ≤ 1

2

nÕ
i=1

r
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2 ,

(3.14)

which makes it clear that to calculate both lower and upper bounds for average
TV distance we will need to calculate Å

β∼ν
(p

α1,β

i
− p

α2,β

i
)2. Importantly, since both

bounds will differ only by a constant (independent of dimension), it will motivate
the introduction of quantum average-case distances defined as

dav(α1, α2) B
1

2

nÕ
i=1

r
Å
β∼ν

(p
α1,β

i
− p

α2,β

i
)2 . (3.15)

Fortunately, as will be shown in Section 3.4, such terms can be expressed via
simple, explicit functions of the quantum objects that we want to calculate the
distance between, provided that ν forms an approximate 4-design.

Remark 4. We note that depending on the perspective one adopts, either the up-
per bound or lower bound on average TV distance might be of particular interest.
Namely, if one wishes to compare the ideal implementation of some protocol
with its noisy version, then the upper bound might be satisfactory. In such a
scenario, the ensemble of random circuits suffices to be approximate 2-design,
since only 2nd moments are needed for its calculation. On the other hand, for
statistical distinguishability, the lower bound is important (see Remark 1) and
thus 4-design property is necessary.

3.4 Quantum average-case distances

In this section, we present our main technical results. We prove that if ran-
dom circuits form approximate unitary 4-designs, the average TV distances (see
Section 3.3) can be approximated, up to the relative error, by simple functions
that can be expressed by degree-2 polynomials in quantum objects in question.
We provide explicit expressions for those functions (quantum average-case dis-
tances), as well as numerical constants for the relative errors. The proofs given in
this section concern exact unitary 4-designs, while derivations for approximate
designs are relegated to Appendix A.2.
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3.4.1 Quantum states

Let pρ,U denote the probability distribution obtained when the state ρ (σ) under-
goes a unitary transformation according to U and is subsequently measured in
the computational basis of Hd . In other words p

ρ,U

i
= tr

(
|i 〉〈i |UρU †

)
, where

{|i 〉}d
i=1
is a computational basis ofH .

Theorem1 (Average-case distinguishability of quantum sates). Let ρ,σ ∈ D(Hd )
be states onHd and letU be a random unitary inHd drawn from measure ν that
forms a δ-approximate 4-design, with δ B δ ′

2d 4
, δ′ ∈

[
0,

1

3

]
. We then have the

following inequalities

ℓ (δ′) a dsav(ρ,σ) ≤ Å
U∼ν
TV(pρ,U , pσ,U ) ≤ u (δ′) A dsav(ρ,σ) , (3.16)

where we define the quantum average-case distance between states

dsav(ρ,σ) =
1

2

p
tr( [ρ − σ]2) =

1

2
‖ρ − σ ‖HS , (3.17)

and a = 0.31, A =

q
d

d+1
≤ 1, ℓ (δ′) =

r
(1− δ′

d2
)3

1+δ ′ , u (δ′) =
(
1 + δ ′

d 2

) 1

2

.

Proof. In what follows we prove a version of the theorem for exact 4-designs
(i.e., setting δ = 0; the proof for approximate 4-designs can be found in Ap-
pendix A.2.1). We start by proving the upper bound in (3.16). To this aim, we
utilize the upper bound in (3.11) (from Jensen’s inequality) to obtain

TVav(ρ,σ) ≤
1

2

dÕ
i=1

q
Å

U∼ν
tr( |i 〉〈i |U∆U †)2 , (3.18)

where we set ∆ = ρ − σ . Using the assumed 2-design property of ν and the
standard techniques of Haar measure integration (cf. Corrolary 1) we get

Å
U∼ν
tr( |i 〉〈i |U∆U †)2 =

1

d (d + 1)
tr(∆2) , (3.19)

which follows directly from Eq. (3.6) and the fact that ∆ is traceless. Inserting
the above into (3.18) we obtain the upper bound from (3.16).
In order to prove the lower bound we use Berger’s inequality (cf. Eq. (3.4))

for variable X = tr(U |i 〉〈i |U †∆):

Å
U∼ν

| tr(U |i 〉〈i |U †∆) | ≥

(
Å

U∼ν
[tr(U |i 〉〈i |U †∆)]2

)3/2

(
Å

U∼ν
[tr(U |i 〉〈i |U †∆)]4

)1/2 . (3.20)
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The numerator of the above fraction contains the power of the second moment
already calculated in Eq. (3.19), hencewe get that it is equal toK = [ 1

d (d+1)
tr(∆2)]3/2.

To get the upper bound for the denominator, we first note that from Lemma 3 it

follows directly that the denominator is equal to L = [
(d+3

4

)−1
tr(Ð(4)
sym∆

⊗4)]1/2,

where Ð(4)
sym is a projector onto the 4-fold symmetric subspace ofH

⊗4
d . Now we

get

tr(Ð(4)
sym∆

⊗4) ≤ C
(
tr
(
Ð
(2)
sym∆

⊗2
))2

=
C

4

(
tr(∆2)

)2
, (3.21)

with C =
10.1

6
. The inequality above is a direct application of Lemma 4, while

the equality follows from the fact that ∆ is traceless and explicit form of Ð(2)
sym.

Inserting everything into Eq. (3.20) we obtain

Å
U∼ν

| tr(U |i 〉〈i |U †∆) | ≥ K

L
≥ w

d

p
tr∆2 , (3.22)

for w =

r
4

C

(d+34 )
d 2 (d+1)2

≥ 0.31 = a . Finally, summing over i = 1, . . . , d , we obtain

lower bound on average TV distance

Å
U∼ν

1

2

dÕ
i=1

| tr(U |i 〉〈i |U †∆) | ≥ a
1

2
| |∆ | |HS , (3.23)

which concludes the proof. �

Remark 5. The proof of Theorem 1 is inspired by the proof of Theorem 4 from
[49] where Berger inequality was used to prove that two states far apart in
Hilbert-Schmidt norm can be information-theoretically distinguished by a POVM
constructed from approximate 4-design.

Remark 6. We note that in existing literature, the trace distance was usually pre-
ferred to the Hilbert-Schmidt distance, one of the reasons being the lack of an
operational interpretation for the latter. The above considerations provide such
an interpretation for H-S distance in terms of average statistical distinguishabil-
ity between quantum states, thus providing a sound physical motivation for its
use.

Remark 7. We note that random quantum circuits in the 1D architecture formed
from arbitrary universal gates that randomly couple neighboring qubits, generate
approximate k-designs efficiently with the number of qubits N [51; 52; 53; 54].
Specifically, δ- approximate 4-designs are generated by the 1D random brick-
work architecture in depthO

(
log

(
N
δ
)
) )
, with moderate numerical constants (see

Appendix B of Ref. [54]). This implies that ensembles appearing in Theorem 1
can be easily realized. Furthermore, it is expected that some of the classes of
variational quantum circuits are expected to have, on average, unitary design-
like properties [67]. This suggests that quantum average-case distances might
be used to quantify the average-case performance of hybrid quantum-classical
algorithms. Naturally, the same remarks hold for Theorem 2 for measurements
and Theorem 3 for channels.
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3.4.2 Quantum measurements

Let pM,ψV denote the probability distribution of a quantum process in which a
fixed pure quantum state ψ0 onHd is evolved according to unitaryV and is sub-
sequently measured via a n-outcome POVM M = (M1,M2, . . . ,Mn). In other
words pM,ψV

i
= tr(Vψ0V

†Mi ).

Theorem2 (quantumaverage-case distance between quantummeasurements).
LetM,N be n-outcome POVMs onHd andV be a random unitary onHd drawn
from measure ν that forms a δ-approximate 4-design, with δ B δ ′

2d 4
, δ′ ∈

[
0,

1

3

]
.

We then have the following inequalities

ℓ (δ′) a dmav(M,N) ≤ Å
V∼ν
TV(pM,ψV , pN,ψV ) ≤ u (δ′) A dmav(M,N) , (3.24)

where we define an quantum average-case distance between measurements

dmav(M,N) =
1

2d

nÕ
i=1

q
‖Mi − N i ‖2HS + tr(Mi − N i )2 . (3.25)

and a = 0.31, A =

q
d

d+1
≤ 1, ℓ (δ′) =

r
(1− δ′

d2
)3

1+δ ′ , u (δ′) =
(
1 + δ ′

d 2

) 1

2

.

Proof. In what followswe prove a version of the theorem for exact 4-designs (the
proof for approximate 4-designs can be found in Appendix A.2.1). The proof is
in fact almost exactly the same as of Theorem 1. We can define ∆i = Mi − N i ,
now each ∆i having the role of previous ∆, namely in each summand appearing
in the TV distance is of the form | tr(Vψ0V

†∆i ) |. We now note that arbitrary fixed
pure state ψ0 = U0 |0〉〈0|U †

0
is unitarily equivalent to computational basis state

via some unitary U0, and that Haar measure is invariant under transformation
U → UU0. From those facts, it follows that we can apply exactly the same steps
as for proof of Theorem 1. For the second moment we obtain

Å
ψ∼νS
tr(ψ∆i )

2
=

1

d (d + 1)

(
tr(∆2

i ) + tr(∆i )
2

)
, (3.26)

which differs from Eq. (3.19) by additional summand, because now ∆i is not
necessarily traceless. The rest of the steps is exactly analogous to the proof of
Theorem 1.

�

3.4.3 Quantum channels

Let pΛ,ψV ,U be the probability distribution associated with a quantum process in
which a fixed pure state ψ0 ∈ S(H) is transformed by unitary transformationV ,
channel Λ, unitary U , and is subsequently measured in the computational basis
ofHd. In other words we have p

Λ,ψV ,U

i
= tr( |i 〉〈i |UΛ(Vψ0V

†)U †).
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Theorem 3 (Average-case distinguishability of quantum channels). LetΛ,Γ be
quantum channels acting on Hd . let ν be a distribution on on U(Hd ) forming
δ-approximate 4-design for δ =

δ ′

(2d )8
. Then we have the following inequalities

ℓch(δ′) ach dchav (Λ,Γ ) ≤ Å
V∼ν

Å
U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) ≤ uch(δ′) Ach dchav (Λ,Γ ) ,

(3.27)

where we defined the quantum average-case distance between channels

dchav (Λ,Γ ) B
1

2

q
‖JΛ − JΓ ‖2HS + tr

(
(Λ − Γ ) [τd]2

)
, (3.28)

and ach = 0.087, Ach = d
d+1

≤ 1, ℓch(δ′) =

(
1− δ′

d2

)3

1+δ ′ , uch(δ′) = 1 + δ ′

d 2
, τd B

É

d
.

Proof. In what follows we prove a version of a theorem for exact 4-designs
(i.e., setting δ = 0 ; the proof for approximate 4-designs can be found in Ap-
pendix A.2.2). In order to simplify the notation we will use the notation∆ B Λ−Γ
(note that ∆ is a superoperator and has a different meaning than ∆ used in the
proof of Theorem 1). We will make use of the Theorem 1 which implies that for
fixed ψV ∈ S(H) the following inequalities hold

a

2
‖∆[ψV ]‖HS ≤ Å

U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) , (3.29)

A

2
‖∆[ψV ]‖HS ≥ Å

U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) . (3.30)

In what follows we prove bounds on Å
V∼ν

‖∆[ψV ]‖HS = Å
ψ∼νS

‖∆[ψ]‖HS. We first
establish the upper bound by employing Jensen’s inequality

Å
ψ∼νS

‖∆[ψ]‖HS ≤
r

Å
ψ∼νS
tr(∆[ψ]2) . (3.31)

The average of tr(∆[ψ]2) can be computed explicitly using the 2-design prop-
erty and Lemma 3. We first rewrite using the same trick as in the proof of Corol-
lary 1

tr
(
∆[ψ]2

)
= tr

(
∆[ψ]⊗2Ó

)
(3.32)

where S =
Íd

i ,j=1 |i 〉〈j | ⊗ |j 〉〈i | is the swap operator acting onH⊗2
d
. Inserting the

above into Lemma 3 yields

2

d (d + 1)
tr
(
Ó ∆⊗2[Ð(2)

sym]
)
=

2

d (d + 1)

1

2

(
tr
(
Ó ∆⊗2[É]

)
+ tr

(
Ó ∆⊗2[Ó]

))
,

(3.33)
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where we used the identity Ð(2)
sym =

1

2
(É ⊗ É + Ó). We now rewrite the first term as

tr
(
Ó∆⊗2[É]

)
= tr

(
∆[É]2

)
. Inserting the above into the integral (with multiplication

and division by d 2) gives

Å
ψ∼νS
tr(∆[ψ]2) =

d 2

d (d + 1)

 
tr

 
∆

[
É

d

]2!
+ tr

(
S∆⊗2

[
S

d 2

] )!
. (3.34)

Recall that J∆ = (É ⊗ ∆) (Φ+), where |Φ+〉 =
1√
d

Íd
i=1 |i 〉 |i 〉 is the maximally en-

tangled state inHd ⊗ Hd. Explicit computation gives ‖J∆‖2HS = tr
(
S∆⊗2 [ S

d 2

] )
.

Å
ψ∼νS
tr(∆[ψ]2) =

d 2

d (d + 1)

 
tr

 
∆

[
É

d

]2!
+ ‖J∆‖2HS

!
. (3.35)

Inserting this expression into (3.31) and using (3.30) finally gives the upper
bound in Eq. (3.27).
To prove the lower bound integrate both sides of (3.29) and apply Berger’s

inequality for Xψ = ‖∆[ψ]‖HS =
p
tr(∆[ψ]2)

Å
ψ∼µS

‖∆[ψ]‖HS ≥

(
Å

ψ∼µS
tr(∆[ψ]2)

)3/2

(
Å

ψ∼µS
tr(∆[ψ]2)2

)1/2 . (3.36)

We proceed by rewriting the integral in the denominator of the above expression

Å
ψ∼νS
tr(∆[ψ]2)2 = 4 Å

ψ∼νS
tr(∆[ψ]⊗4Ð(2)

sym ⊗ Ð
(2)
sym) . (3.37)

where we used the identity 2 trÐ(2)
symX ⊗Y = trX tr(Y ) + tr(XY ) and tr(∆[ψ]) =

0. By expanding ∆[ψ]⊗4 = ∆⊗4 [ψ⊗4] and integrating over ψ (cf. Lemma 3) we
obtain

Å
ψ∼νS
tr(∆[ψ]2)2 =

4
(d+3

4

) tr
(
∆⊗4

h
Ð
(4)
sym

i
Ð
(2)
sym ⊗ Ð

(2)
sym

)
. (3.38)

Substituting Ð(2)
sym =

(d+1
2

)
Å

ψ∼νS
ψ⊗2 we get

Å
ψ∼νS
tr(∆[ψ]2)2 =

4
(d+1

2

)2

(d+3
4

) Å
ψ∼νS

Å
ϕ∼νS
tr
(
Ð
(4)
sym∆

†[ψ]⊗2 ⊗ ∆†[ϕ]⊗2
)
. (3.39)

We now utilize Lemma 5 to upper bound the function inside the integral

tr
(
Ð
(4)
sym∆

†[ψ]⊗2 ⊗ ∆†[ϕ]⊗2
)
≤ C tr(Ð(2)

sym∆
†[ψ]⊗2) tr(Ð(2)

sym∆
†[ϕ]⊗2) , (3.40)
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where C =
13

6
. Inserting this into (3.39) and carrying over the integrals over ψ

and φ (with the help of Corollary 1) we get

Å
ψ∼νS
tr(∆[ψ]2)2 ≤ 4C

(d+3
4

) tr
(
Ð
(2)
sym∆

⊗2
h
Ð
(2)
sym

i )2
. (3.41)

We now calculate

tr
(
Ð
(2)
sym∆

⊗2
h
Ð
(2)
sym

i )
=

(
d + 1

2

)
Å

ψ∼νS
tr
(
Ð
(2)
sym∆[ψ]⊗2

)
= (3.42)

=
1

2

(
d + 1

2

)
Å

ψ∼νS
tr
(
∆[ψ]⊗2Ó

)
= (3.43)

=
1

2

(
d + 1

2

)
Å

ψ∼νS
tr
(
∆[ψ]2

)
. (3.44)

In the first equality, we used the fact that since νS forms a 2-design we can sub-
stitute the projector onto 2-fold symmetric subspace with corresponding (renor-
malized) average. In the second equality, we exploited the fact that states of the
type ψ⊗2 are in an invariant subspace of Ð(2)

sym. Third equality follows directly
from Corollary 1 and fact that tr(∆[ψ]) = 0. Combining (3.41) and (3.42) we
obtain

Å
ψ∼νS
tr(∆[ψ]2)2 ≤

C
(d+1

2

)2

(d+3
4

)
(
Å

ψ∼νS
tr
(
∆[ψ]2

))2
. (3.45)

Inserting the above bound into (3.36) gives

Å
ψ∼νS

‖∆[ψ]‖HS ≥ bd

r
Å

ψ∼νS
tr(∆[ψ]2) , (3.46)

with bd =
1√
13

q
(d+2) (d+3)
d (d+1)

. Integrating both sides of (3.29) overψ ∼ νS and using

the the above inequality we finally obtain

ach dchav (Λ,Γ ) ≤ Å
V∼ν

Å
U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) , (3.47)

with ach = a · bd ≈ 0.087. �

Remark 8. We note that one can view quantum states and measurements as
special types of quantum channels. While for state preparation channels the
operational procedure of discrimination is equivalent and one gets the same ex-
pression (see Example 18), for measurements it is not the case . Moreover, in the
case of δ-approximate designs, applying the above Theorem 3 for the average-
case distance between state preparation channels gives worse than Theorem 1
constants and functional dependence on δ . This approach thus leads to less
tight bounds for states than treating them separately.

Remark 9. We note that while the dependence of δ on the dimension of the sys-
tem d is very high in Theorems 1, 2 and 3, it does not pose a practical problem.
Indeed, exponentially accurate δ-approximate unitary designs can be imple-
mented already with logarithmic-depth quantum circuits [54].
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3.4.4 Consequences

The theorems proven in this section suggest defining average-case distances
between quantum states, measurements, and channels via formulas dsav, d

m
av, d

ch
av

appearing in approximations (3.16), (3.24), and (3.27). This approach has sev-
eral pleasant consequences. First, functions describing these distances can be
expressed via simple, degree-two polynomials in underlying objects and can
be easily explicitly computed for objects acting on systems of moderate dimen-
sion (no optimization is needed as in the case of the diamond norm [47]). Sec-
ond, all average-case distances utilize in some way the Hilbert-Schmidt norm.
This gives this norm an operational interpretation it did not possess before (es-
pecially for quantum states for which dsav(ρ,σ) =

1

2
‖ρ − σ ‖HS). Third, it turns

out that so-defined distances satisfy plethora of natural properties such as sub-
additivity: dsav(ρ1 ⊗ ρ2,σ1 ⊗ σ2) ≤ dsav(ρ1,σ1) + d

s
av(ρ2,σ2), joint convexity:

dsav(
Í

α pαρα ,
Í

α pασα ) ≤ Í
α pαd

s
av(ρα ,σα ), or restricted data-processing in-

equalities (typically various distances dav are non-increasing under application
of unital quantum channels). Fourth, while it may seem that condition of being
(approximate) 4-design is quite stringent, from a very recent paper [54] it follows
that ensembles of quantum circuits required by Theorems 1-3 can be realized by
random circuits in the 1D brickwork architecture in depthO (log (N )) (with mod-
erate prefactors) [54]. Finally, we expect that our average-case distances will
more accurately capture the behavior of errors in the performance of quantum
objects in generic moderate size quantum algorithms (note that many architec-
tures of variational circuits used in NISQ algorithms are expected to exhibit, on
average, design-like behavior [67]). We back up this last claim numerically by
testing the usefulness of our distance measures on families of random quantum
circuits originating from random instances of variational quantum algorithms on
few-qubit systems.
For all the reasons mentioned above, we believe that introduced distances

will prove useful in analyzing the practical performance of near-term quantum
processors. We expect that they can also be useful in other branches of quantum
information requiring the usage of randomized protocols like quantum commu-
nication, quantum complexity theory, or quantum machine learning. In the next
section we analyze simple examples that illustrate potential usefulness of our
results.

3.5 Main applications

3.5.1 Application 1: Noise in quantum advantage experiments.

Here we consider examples which help to understand how noise affects average
probability distributions in experiments with random circuits sampling. First, AC
distances between noisy and ideal state allow to lower-bound average TVDs
between target and noisy distributions. Second, AC distances allow to upper-
bound average-case TVD between noisy distribution and trivial (uniform) one.
Indeed, to bound average TVD between uniform and noisy distribution, one cal-
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culates AC distance to maximally mixed state É

d
(states), trivial POVM MI

=(
É

d
, . . . ,

É

d

)
(measurements), or maximally depolarizing channel Λdep that acts as

Λdep(ρ) =
É

d
for any state ρ (channels). This follows directly from definitions of

AC distances – see Lemmas 23, 24, 25 and discussion in 3.7.
In what follows, most of the examples make use of some average noise pa-

rameter q av (with different meaning for each example) that describes an average
(over qubits) probability of errors of considered type not occurring. In most of

them, wemake an assumption that q av ≤ N

q
1

2
, with N being the number of qubits.

This is done solely to achieve a particularly appealing form of lower bounds.
One can derive expressions that are more complicated and do not require this

assumption (see Section 3.7.3 for details). In general, since N

q
1

2

N→∞−−−−−→ 1, the

assumption becomes less restrictive for higher-dimensional systems and the
presented bounds are intended for use in such cases. In this section, we state
the examples and discuss their consequences, while proofs are relegated to Sec-
tion 3.7.3.

Example 1 (Pauli eigenstates and tensor product Pauli noise). Consider state
ψpauli = ⊗N

i=1
|±ri 〉〈±ri |, where ri ∈ {x , y , z }, i.e., |±ri 〉 is any Pauli eigenstate

on qubit i (with eigenvalue +1 or −1.). Consider tensor product Pauli channel
Λpauli = ⊗N

i=1
Λ
pauli
i
, where single-qubit channel is Λpauli

i
(ρ) =

Í
j=1 p

(i )

j
σj ρσj

with j ∈ {1, x , y , z }, σ1 = É, and p (i )

j
≥ 0,

Í
j p

(i )

j
= 1. Define q (i )

= p
(i )

1
+ p

(i )
ri , i.e.,

a probability of applying on qubit i a gate that stabilizes the state of that qubit
(namely, either identity or Pauli matrix of which |±ri 〉 is an eigenstate). Define
average properties of noise as q av

=
1

N

ÍN
i=1 q

(i ) and f av
=

1

N

ÍN
i=1 q

(i ) (1 − q (i )).

Assume q (i ) ≥ 1

2
for each qubit and that q av ≤ N

q
1

2
. Then we have

dsav(Λ
pauli(ψpauli),

É

d
) <

1

2
exp (−2f av N ) , (3.48)

dsav(Λ
pauli(ψpauli),ψpauli) >

1

2

p
1 − 2(q av )N , (3.49)

The above examplemight be relevant, for example, in QAOA algorithmswhere
input state is often indeed a tensor product Pauli state [57], or can be useful for
estimating effects of state-preparation errors for standard setting where input
state is |0〉〈0|⊗N . We see that with growing system size, the average noisy distri-
bution approaches uniform distribution exponentially quickly (whilemoving away
from target distribution).
This demonstrates that even in the absence of noise in random unitaries, the

state-preparation errors will quickly aggregate. Exactly the same behaviour is
demonstrated for the following simplified measurement noise model.

Example 2 (Symmetric bitflip measurement noise). Consider a symmetric, un-
correlated stochastic measurement noise map Tsym = ⊗N

i=1
Tsym
i
, where for each
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qubit we have Tsym
i

= p (i )
É + (1 − p (i ))σx , with (1 − p (i )) being a bitflip error

probability on i th qubit.. It follows that the k th effect of a noisy version TsymP
of computational basis measurement P is given by (TsymP)k =

Í
l T
sym
k l

|l 〉〈l |.
Define f av

=
1

N

ÍN
i=1 p

(i ) (1 − p (i )). Assume p (i ) ≥ 1

2
for each qubit. Then we

have

dmav(T
symP,MI) <

1

2
exp (−2f av N ) , (3.50)

The above means that even in the absence of state-preparation and gate er-
rors, for symmetric bitflip noise the resulting average distribution exponentially
quickly converges to uniform. We now consider a distance from ideal measure-
ment for more realistic case of generic tensor product measurement noise.

Example 3 (Generic tensor productmeasurement noise). LetP = (|x〉〈x|)x∈{0,1}N
be a computational basis measurement on N qubit system. LetM = (Mx)x∈{0,1}N

be a POVM specified by effects Mx = Λ
†
1
( |x1〉〈x1 |) ⊗ . . . ⊗ Λ

†
N
( |xN 〉〈xN |), where

Λi are quantum channels affecting i ’th qubit, and Λ
†
i
is the conjugate of Λi . De-

fine classical success probability as p (i ) (xi |xi ) = tr
(
Λ
†
i
( |xi 〉〈xi |) |xi 〉〈xi |

)
and

corresponding average q (i )
av =

p i (0|0)+p (i ) (1|1)
2

. Let q av
B

1

N

ÍN
i=1 q

(i )
av . Assume that

for each qubit q (i )
av ≥ 1

2
and that q av ≤ N

q
1

2
. Then we have

dmav(M,P) >
1

2

p
1 − 2(q av )N . (3.51)

The quantity q av is the survival probability of classical single-qubit state
|xi 〉〈xi | that goes through a channelΛi , averaged over all qubits and input states.
We note that those quantities are routinely reported in experimental works, which
makes the above bound particularly useful. Indeed, data from recent quantum
advantage experiments [21; 98] suggests that q av is around 97% (we take av-
erage of values reported in both papers). Assume perfect gates, no state prepa-
ration errors and q av

= 0.97. Furthermore, assume that random circuits used
in experiments form approximate 4-designs (this assumption is consistent with
results of [106]). Then from Theorem 2 it follows that if readout errors remain
constant with scaling of the system, for a 54-qubit quantum computer, on av-
erage (over realizations of random quantum circuits) output distributions pM,ψV

will have a constant ≈ 0.13 TV-distance from the ideal probability distributions
pP,ψV solely due to effects of readout noise.

Example 4 (Separable Pauli noise in the middle of the circuit). Consider ten-
sor product Pauli channel Λpauli = ⊗N

i=1
Λ
pauli
i
, where single-qubit channel is

Λ
pauli
i

(ρ) =
Í

j=1 p
(i )

j
σj ρσj with j ∈ {1, x , y , z }, σ1 = É, and p (i )

j
≥ 0,

Í
j p

(i )

j
= 1;

the same noise model as in Example 4. For each qubit i define | |p(i ) | |2
2
=Í

j

(
p
(i )

j

)2
, and corresponding average pav

2
=

1

N

ÍN
i=1 | |p

(i ) | |2
2
, as well as average
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(over qubits) probability of application of identity channel pav
1

=
1

N

Í
i=1 p

(i )

1
(note

that p (i )

1
corresponds to probability of no errors on qubit i ). Assume pav

1
≤ N

q
1

2
.

Then we have

dchav (Λ
pauli
,Λdep) <

1

2
exp

(
−pav

2
N
)
, (3.52)

dchav (Λ
pauli
,I) >

1
√
2

q
1 − 2

(
pav
1

)N
. (3.53)

Recall that the above scenario corresponds to inserting local Pauli noise "be-
tween" two random circuits (two averages in Eq. (3.27)). Similarly to previous
cases, whenever there is non-zero noise, we will observe an exponential con-
vergence to the trivial distribution and high separation from ideal distribution cor-
responding to identity channel I.

Example 5 (Single Pauli error the middle of the circuit). Consider single-qubit

channel Λ(i )
σ that applies some traceless unitary σ on qubit i (and identity to all

other qubits). Then we have

dchav (Λ
(i )
σ ,I) =

1
√
2

. (3.54)

Physically, the above may correspond to a unitary noise applying one of Pauli
matrices on qubit i somewhere in the circuit. We then observe a constant sep-
aration (value of 1√

2
) between ideal distribution and the noisy distribution. Such

significant average distance between noisy and target distribution suggests that
local strong coherent errors can dramatically affect the performance of a given
device in typical circumstances. This result is in agreement with empirical obser-
vationsmade in Refs. [107; 21]where single-qubit errors were causing "speckle
pattern" of output bitstrings probabilities to break, resulting in very low cross-
entropy benchmarking fidelity.

3.5.2 Application 2: Sample efficient distinguishability of quantum objects with in-
coherent access

Example 6. For any pure state ψ and maximally-mixed state τd B
É

d
onHd , we

have dsav (ψ, τd ) =
1

2

q
1 − 1

d
.

It follows that a single round of a randomized protocol implicit in the definition
of dsav (cf. Remark 2), realized via approximate 4-design and computational ba-
sis measurements, gives a constant bias in distinguishing any pureN-qubit state
ψ from the maximally mixed state: pavsucc � 0.57. This probability can be made
arbitrarily close 1 by repeating the protocol and using the majority-vote strat-
egy. Importantly, this method does not utilize the coherent access or a quan-
tum memory (in a sense defined, e. g., in [99; 108]). We note that a related
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but distinct scenario is considered in Ref. [99]. There, the authors introduced
the task of PurityTesting corresponding to discrimination between unknown
Haar-random pure random state and maximally mixed state. For N qubit sys-
tems, Theorem 4 of [99] implies exponential lower bound for the query com-
plexity k (number of usages of unknown quantum state) needed to succeed in
this task, given incoherent access to objects in question. In contrast, our ran-
domized measurement protocol gives high statistical distinguishability already
for a single query for all states ψ. The difference comes from the fact that in the
scenario considered in Example 6 the random state is arbitrary but known.

Example 7. Let ΛU be a a unitary channel corresponding to a unitary U on Hd

and letΛdep be a depolarizing channel i.e. Λdep(ρ) = τd for any ρ. Then we have

dchav
(
ΛU ,Λdep

)
=

1

2

q
1 − 1

d 2
.

In related task FixedUnitary studied in [99], one is asked to distinguish un-
known Haar-random unitary channelΛU fromΛdep. Exponential query complex-
ity lower bound incoherent protocols was shown in [99]. By repeating analogous
reasoning as for states, we get that when ΛU is arbitrary but known, randomized,
non-adaptive, and incoherent protocol, utilizing two realizations of approximate
4-designs, gives constant bias in success probability of discrimination of ΛU

from Λdep using just a single query.

3.5.3 Application 3: Strong complexity of quantum states and unitaries.

The above examples have interesting consequences for the notion of a strong
state and unitary complexity investigated in [55]. There, the authors defined
complexity C∆ of N-qubit pure state ψ (resp. unitary circuit ΛU ) as the number
of elementary gates needed to construct a circuit necessary to implement a two-
outcome measurement discriminating between ψ (resp. ΛU ) and the maximally
mixed state (resp. maximally depolarizing channelΛdep) with success probability
psucc =

1

2
+∆. Our results imply that if the requirement of two-outcome measure-

ment is relaxed and one accepts the use of classical randomness, thenmeasure-
ments realizable with circuit depths r = O (log(N )) (i.e., unitary 4-designs from
Ref. [54]) can succeed in these discrimination tasks with a constant bias ∆∗ for
all statesψ and unitary channels ΛU . In particular, for dimension d , the average-
case distance between any pure quantum state and the maximally mixed state

is equal to 1

2

q
1 − 1

d
(see Lemma 23), while the AC distance between any uni-

tary channel ΛU and maximally depolarizing channel is equal to
1

2

q
1 − 1

d 2
(see

Lemma 25). Therefore, in both cases, the bias corresponding to a randomized
measurement strategy is equal to ∆∗ =

1

4
(recall discussion of Total-Variation

Distance in Section 2.4). This renders the so-defined notion of complexity trivial
- all states and unitaries will have complexity C∆ ≤ log(N ), unless bias ∆ satis-
fies ∆ > 1

4
(independent on the system size). Note that the gate complexity of

implementing the distinguishing measurement is very small here due to the use
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of classical randomness. Indeed, if we didn’t allow for classical randomness, but
instead implemented themeasurement directly via, e.g., Naimark’s dilation [101],
it could, in general, require higher number of gates (see also Remark 2).
We note that large average-case distance dav implies only information-theoretic

distinguishability of quantum objects. The cost of classical post-processing
needed to distinguish the probability distributions resulting from randomized pro-
tocols can be very large since they operate on exponentially large sample space.

3.5.4 Numerical results.

Here we present results of numerical studies of small-size quantum systems.
We compare scaling with the system size for worst-case distance, average-
case distance, and a mean TVD taken over ensemble of unitaries. The mean
Total-Variation distance is calculated numerically over three types of ensembles
of unitaries with a structure of variational circuits. One ensemble has QAOA-like
structure, while the other two are standard hardware-efficient VQE ansatze [60].
More specifically, in each case, the p-layer circuit can be written as

Up =

pÖ
j=1

Urot,j Uent,j . (3.55)

whereUrot,j is a "rotation block" and Uent is an "entangling block". Exact form of
the evolution, as well as the initial state depends on the ensemble. We consider
three such ensembles:

(a) Circuits that originate from QAOA instance for fixed Hamiltonian H2SAT en-
coding fixed (random) instance of random MAX-2-SAT problem [109].
In this case, the initial state is of the form |+〉⊗N with |+〉 =

1√
2
( |0〉 + |1〉),

while unitary evolution is given by Urot,j B Uαj = exp
(
−iαj

ÍN
k=1 σ

(k )
x

)
, and

Uent,j B Uβj = exp
(
−iβjH2SAT

)
, with σ (k )

x being X gate on k th qubit. For
each j , αj and βj are N-dimensional vectors of parameters chosen ran-
domly from range [−π, π].

(b) Circuits of a form of generic Hamiltonian-independent VQE ansatz with
initial state being |0〉⊗N . We choose the rotation block to be of the form
Urot,j B Uαj =

ËN
k=1 exp

(
−iα2j σ

(k )

Z

)
◦ exp

(
−iα2j+1 σ

(k )

Y

)
, where σY ,σZ

are Y and Z gates. The entangling block is Uent,j = Uent B
ÎN−1

k=1 CXk ,k+1
with CXk ,l denoting CX gate between qubits k and l . For each j , αj is a 2N-
dimensional vector of parameters chosen randomly from range [−π, π].

(c) The third ensemble is similar to the VQE-like ensemble (b), but now rotation
block contains only ofY rotations. Furthermore, the angles are not random,
but they are chosen from a fixed set of parameters that come from solutions
of variational optimization. In other words, each used unitary corresponds
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(a) Quantum states, distance to ideal distribution

(b) Quantum states, distance to uniform distribution

Figure 3.3: Results of numerical studies for comparison between worst-case distance,
quantum average-case distance and numerically calculated mean TVD for quantum
states. Figure 3.3a corresponds to distance to ideal (noiseless) distribution, while in Fig-
ure 3.3b, we plot distance to uniform (trivial) distribution. For average-case distance,
we also plot value corresponding to lower bound on average-case TVD (following from
Eqs. (3.16), (3.24), (3.27)). In case of worst-case distance, "lb" indicates lower-bound.
Quantum average-case distances were calculated explicitly. Mean TVDs were calcu-
lated between (exact numerical) probability distributions over 1000 random instances
of random unitaries.
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(a) Quantum measurements, distance to ideal distribution

(b) Quantum channels, distance to ideal distribution

Figure 3.4: Results of numerical studies for comparison between worst-case distance,
quantum average-case distance and numerically calculated mean TVD. For both plots,
we show the distance to ideal (noiseless) distribution. The data conventions are exactly
the same as in Figure 3.3
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(a) Quantum states, distance to ideal distribution

(b) Quantum measurements, distance to ideal distribution

(c) Quantum channels, distance to ideal distribution

Figure 3.5: Histograms of TVDs obtained for random ensembles considered in numer-
ical simulations corresponding to Figs. 3.3, 3.4. Different shades of a given color (blue
or green) correspond to different system sizes for a given ensemble (QAOA or VQE).
Bounds from average-case distances are indicated via dashed lines and for each di-
mension are the same for both ensembles (they depend only on quantum objects in
question, not on the choice of random ensemble).
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to a circuit that was found to be optimal in a VQE optimization (as opposed
to uniformly random angles taken for both previous ensembles). We use
datasets from Ref. [110] where authors developed an adaptive measure-
ment scheme that improves performance of VQE.

Based on recent results [67], we expect the random ensembles (a) and (b) to
form (approximate) unitary 4-designs. Ensemble of type (c), due to limited com-
putational resources, consist of only 7− 12 unitaries (recall that generating each
unitary requires performing full VQE optimization). This implies that this ensem-
ble does not form even unitary 2-design. It is nevertheless still interesting to
investigate its behaviour, since those are circuits of particular practical impor-
tance.
To calculate quantum AC distances, we consider the following scenarios:

1. (States) We compare a randomly chosen Pauli eigenstate affected by ran-
dom local Pauli noise with its ideal version (Fig. 3.3a) and with maximally
mixed state É

d
(Fig. 3.3b ). This is scenario considered in Example 1. The

error probabilities are chosen randomly from range [0.001, 0.01].

2. (Measurements) The noisy measurement is a tensor product POVM con-
structed from single-qubit measurements obtained via Quantum Detector
Tomography [80] of IBM’s 15-qubit Melbourne device. We compare it to
ideal computational-basis measurement (Fig. 3.4a). Since the measure-
ment noise in superconducting devices is usually highly asymmetric [65],
we do not expect it to converge to uniform distribution.

3. (Channels) We compare channel corresponding to random tensor prod-
uct of 1-qubit rotations around random axis with ideal identity channel I
(Fig 3.4b). Explicitly, the unitary corresponding to the channel has a formËN

k=1 exp(−iγkV (k )), whereV (k ) is chosen randomly to be X ,Y or Z gate,
and γk ∈ [0.025π, 0.0313π]. Similarly to POVMs, we do not expect coherent
errors to bring noisy distributions close to uniform distribution.

In each case, number of circuit layers is ⌊1.5N ⌋ for ensembles a) and b), while
for ensemble c) it varied between instances. In Figs. 3.3, 3.4 we collectively
present results of all simulations. Recall that the two random ensembles pre-
sented in Figs. 3.3, 3.4 consist of circuits that are variational QAOA and VQE cir-
cuits with random parameters. From the plots it is clear that in all studied cases
for those ensembles, the quantum average-case distance is both significantly
closer and more similar in scaling to mean Total Variation distance between dis-
tributions in question, as compared to worst-case distance. At the same time,
for optimized VQE ensemble, we see that for distances between ideal and noisy
distributions, the results are qualitatively similar to random ensembles in case of
states and channels, but significantly different for quantum measurements. Re-
call that POVMs used to generate the plot are results of detector tomography of
actual quantum device from IBM. In this case, the noise affects results so much,
that empirical TVDs are closer to worst-case than to average-case bounds. In
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case of distance between noisy and uniform distribution for states, we also ob-
serve that average-case distances do not capture well the behaviour of the dis-
tributions for unitaries obtained in VQE optimization. This is not surprising – those
circuits are certainly not random.
In Fig 3.5 we present histograms of TVDs over random unitaries. The data-

points correspond to simulations presented in Figs. 3.3, 3.4. The plots show how
the TVDs concentrate for small system sizes and demonstrate that all random
points lie well within bounds provided by average-case distances.

3.6 Properties of distance measures

While expressions for average-case distances introduced in Section 3.4 might
seem abstract, it turns out that they share multiple desired properties with com-
mon distances used in quantum information [111; 17]. In particular, our dis-
tances indeed fulfill metric axioms, they are subadditive with respect to tensor
products, and have a joint convexity property. They are also non-increasing un-
der unital quantum channels. Finally, the quantum average-case distance be-
tween unital channels possesses two additional physically well-motivated prop-
erties – stability (it does not change when both channels are extended by identity
channel) and chaining (distance between compositions of multiple channels is
at most the sum of distances between constituting channels) [111]. In this sec-
tion, we state and prove those properties for states (Section 3.6.1), measure-
ments (Section 3.6.2), and channels (Section 3.6.3). To make navigation easier,
each subsection starts with a table of properties, a comparison with relevant
worst-case distance, and the text reference in which the properties are proved
– Table 3.1 for states, Table 3.2 for measurements, and Table 3.3 for channels.

3.6.1 Quantum states

The following Table 3.1 summarizes properties of the quantum average-case
distance between states and compares it to the worst-case trace distance.

Lemma 6 (dsav fulfills axioms of a metric). Let d
s
av, denote average distances

between states defined in Eq. (3.17) as

dsav(ρ,σ) =
1

2

p
tr( [ρ − σ]2) =

1

2
‖ρ − σ ‖HS .

Then dsav satisfies axioms of a metric in space of quantum states. Specifically, it
satisfies the triangle inequality, symmetry, and identity of indiscernibles:

dsav(ρ,σ) ≤ dsav(ρ, τ) + dsav(τ,σ) for all ρ,σ, τ ∈ D(Hd im) (3.56)

dsav(ρ,σ) = d
s
av(σ, ρ) for all ρ,σ ∈ D(Hd im) (3.57)

dsav(ρ,σ) = 0 ⇐⇒ ρ = σ for all ρ,σ ∈ D(Hd im) . (3.58)

Proof. The result follows directly from the fact, that dsav is a Hilbert Schmidt dis-
tance. �
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Property Comparison

Function

Worst-case distance:
dtr (ρ,σ) =

1

2
‖ρ − σ ‖1

Average-case distance:
dsav (ρ,σ) =

1

2
‖ρ − σ ‖H S

(See Theorem 1 and Lemma 6)

Subadditivity
Both distances satisfy:

d (ρ1 ⊗ ρ2,σ1 ⊗ σ2) ≤ d (ρ1,σ1) + d (ρ2,σ2)

(See Lemma 7)

Joint Convexity
Both distances satisfy:

d (
Í

α pαρα ,
Í

α pασα ) ≤
Í

α pαd (ρα ,σα )

(See Lemma 8)

Data Processing
Inequality

Worst-case distance:
dtr (Λ(ρ),Λ(σ)) ≤ dtr (ρ,σ) for CPTP Λ

Average-case distance:
dsav (Φ(ρ),Φ(σ)) ≤ dsav (ρ,σ) for unital Φ

(See Lemma 9)

Table 3.1: Summary of the mathematical properties of worst-case and average-case
distances between quantum states.

Lemma7 (dsav is subadditive). For arbitrary quantum states ρ1,σ1 ∈ D(H), ρ2,σ2 ∈
D(H), we have

dsav(ρ1 ⊗ ρ2,σ1 ⊗ σ2) ≤ dav(ρ1,σ1) + dav(ρ2,σ2) . (3.59)

Proof. The proof follows from triangle inequality and multiplicativity with respect
to the tensor product, i.e.

‖ρ1 ⊗ ρ2 − σ1 ⊗ σ2‖HS = ‖ρ1 ⊗ (ρ2 − σ2) − (σ1 − ρ1) ⊗ σ2‖HS
≤ ‖ρ1‖HS‖ρ2 − σ2‖HS + ‖σ1‖HS‖σ1 − ρ1‖HS
≤ ‖ρ2 − σ2‖HS + ‖σ1 − ρ1‖HS.

(3.60)

�

Lemma8 (dsav has joint-convextiy property). For arbitrary sets of quantum states
{ρα }α , {σα }α and probability distributions {pα }, we have

dsav

 Õ
α

pαρα ,
Õ
α

pασα

!
≤

Õ
α

pαd
s
av (ρα ,σα ) . (3.61)
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Proof. The proof follows directly from triangle inequality,

dsav

 Õ
α

pαρα ,
Õ
α

pασα

!
=

�����

Õ
α

pα (ρα − σα )

�����
HS

≤
Õ
α

pα ‖ρα − σα ‖HS =

=

Õ
α

pαd
s
av (ρα ,σα ) .

(3.62)

�

Lemma 9 (Data-processing inequalities for average-case distance between
states). Average-case distance between states is monotonic with respect to
unital maps, i.e., for a unital Φ, we have

dsav(ρ,σ) ≥ dsav(Φ(ρ),Φ(σ)) . (3.63)

Proof. We begin the proof by reminding celebrated Uhlmann theorem [112], that
for unital channel Φ and a Hermitian operator H , we have

Φ(H ) ≺ H , (3.64)

where the majorization relation above can be seen as a majorization between
real vectors of eigenvalues [17; 113]. We also note, that using the fact, that
Hilbert-Schmidt norm is a Schur-convex [113] function of eigenvalues, we get

dsav(ρ,σ) ≥ dsav(Φ(ρ),Φ(σ)) . (3.65)

�

Lemma 10 (Separation between dsav and dtr). Let ρ,σ ∈ Hd be quantum states.
Then from standard inequalities between 1 and 2 norms, it follows that

dsav(ρ,σ) ≤ dtr(ρ,σ) ≤
√
d dsav(ρ,σ) . (3.66)

We now consider an example that attains the bound in Lemma 10.

Example 8 (Two orthogonal maximally mixed states of rank d
2
). Consider two

states ρ,σ ∈ Hd, such that ρ =
Éd′
d′ ,σ =

Éd′
d′ on disjoint halves of the space, i.e.,

d′ = d
2
and tr(ρσ) = 0. Direct calculation yields

dsav (ρ,σ) =
1
√
d
,

dtr (ρ,σ) = 1 .

Clearly, the above shows that in the asymptotic limit, the average-case distance
between states goes to 0. From the perspective of statistical distinguishability, it
means that the states can be distinguished perfectly with optimal strategy, while
randomized strategy fails dramatically.
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Example 9 (Counterexample for data-procesiing inequality for quantum states).
Consider two mixed states ρ,σ ∈ D(H) from previous Example 8. Now consider
a non-unital quantum channel Λ s.t. Λ(ρ) = |0〉〈0| and Λ(σ) = |1〉〈1|. Explicit
computation combined with results of the previous example yields

dsav (Λ(ρ),Λ(σ)) =
1
√
2

>
1
√
d
= dsav (ρ,σ) ,

for d > 2.

3.6.2 Quantum measurements

The following Table 3.2 summarizes properties of the quantum average-case
distance between measurements and compares it to the worst-case operational
distance. For POVMs M and N, symbol M ⊗ N denotes a POVM with effects
{Mi ⊗ N j }i ,j . Quantum pre-processing channel Γ acts on the state just before
measurementM. This is equivalent to performing new POVM with effects trans-
formed via dual channel Mi → Γ ∗(Mi ) on the original state [114]. The fact
that channel Γ is trace-preserving implies that dual channel Γ ∗ is unital, which
ensures that {Γ ∗(Mi )}i a proper POVM. The post-processing stochastic map
described by matrix Λ transforms POVM’s effects as Mi →

Í
j Λi jM j (this can

be interpreted as classical post-processing of classical outputs of the measure-
ment).

Lemma 11 (dmav fulfills axioms of a metric). Let d
m
av, denote average distances

between quantum measurements defined in Eq. (3.25) as

dmav(M,N) =
1

2d

nÕ
i=1

q
‖Mi − N i ‖2HS + tr(Mi − N i )2 .

Then dmav satisfies axioms of a metric in space of POVMs. Specifically, it satisfies
the triangle inequality, symmetry, and identity of indiscernibles:

dmav(M,N) ≤ dmav(M, L) + dmav(L,N) for all M,N, L ∈ P(H) (3.67)

dmav(M,N) = d
m
av(N,M) for all M,N ∈ P(H) (3.68)

dmav(M,N) = 0 ⇐⇒ M = N for all M,N ∈ P(H) . (3.69)

Note, that dmav(M,N) is absolute homogeneous, i.e. if we extend the definition of
dmav to arbitrary collections of operators, we see, that d

m
av(sM, sN) = |s |dmav(M,N).

Proof. We note first that according to Eq. (3.25), dmav(M,N) is proportional to the
sum of non-negative terms of the formq

‖Mi − N i ‖2HS + tr(Mi − N i )2 . (3.70)

First, we note, that both terms, treated as a functions (M ,N ) ↦→ ‖M − N ‖HS
and (M ,N ) ↦→ | tr(M − N ) | satisfies triangle inequality, moreover the function
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Property Comparison

Function

Worst-case distance:
dop (M,N) =

1

2
supρ∈D(H)

Ín
i=1 | tr (Miρ) − tr (N iρ) |

Average-case distance:

dmav (M,N) =
1

2d

Ín
i=1

q
‖Mi − N i ‖2HS + tr (Mi − N i )

2

(See Theorem 2 and Lemma 11)

Subadditivity
Both distances satisfy:

d (M1 ⊗M2,N1 ⊗ N2) ≤ d (M1,N1) + d (M2,N2)

(See Lemma 12)

Joint Convexity
Both distances satisfy:

d (
Í

α pαMα ,
Í

α pαNα ) ≤
Í

α pαd (Mα ,Nα )

(See Lemma 13)

Data Processing
Inequality

Worst-case distance:
dop (Λ ◦M ◦ Γ ,Λ ◦ N ◦ Γ ) ≤ dop (M,N) for CPTP Γ , stochastic Λ

Average-case distance:
dmav (Λ ◦M ◦Φ,Λ ◦ N ◦Φ) ≤ dmav (M,N) for unital Φ, stochastic Λ

(See Lemma 14)

Table 3.2: Summary of the mathematical properties of worst-case and average-case
distances between quantum measurements.

(a, b) ↦→
p
|a |2 + |b |2 is subadditive and increasing in each argument. There-

fore dmav(M,N) obeys triangle inequality. Symmetry, absolute homogeneity, and
identity of indiscernibles follow from direct inspection. �

Lemma 12 (dmav is subadditive). For arbitrary quantum measurements M1,N1 ∈
P(Hd, n),M2,N2 ∈ P(Hd′, n′), we have

dmav(M1 ⊗M2,N1 ⊗ N2) ≤ dmav(M1,N1) + d
m
av(M2,N2) . (3.71)

Proof. By triangle inequality we have

dmav(M1 ⊗M2,N1 ⊗N2) ≤ dmav(M1 ⊗M2,N1 ⊗M2) +d
m
av(N1 ⊗N2,N1 ⊗M2). (3.72)

Now we consider one of the terms from the right-hand side of the inequality
above and bound it by

dmav(M1 ⊗M2,N1 ⊗M2) ≤ dmav(M1,N1). (3.73)

The above inequality follows fromdirect calculations, since dmav is a sumof square
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roots of the formulas for a single effect, for which we can write

‖ (M1)i ⊗ (M2)j − (N1)i ⊗ (M2)j ‖2HS + tr((M1)i ⊗ (M2)j − (N1)i ⊗ (M2)j )
2

= ‖ (M1)i − (N1)i ‖2HS‖ (M2)j ‖2HS + tr((M1)i − (N1)i )
2 tr((M2)j )

2

≤ tr((M2)j )
2

(
‖ (M1)i − (N1)i ‖2HS + tr((M1)i − (N1)i )

2

)
.

(3.74)

Combining the terms above together with the fact, that
Í

j tr(M2)j = d ′, we obtain
Eq. (3.73). Similarly, we can bound dmav(N1 ⊗ N2,N1 ⊗M2) ≤ dmav(N2,M2) which,
together with Eq. (3.72) gives us the result. �

Lemma 13 (dmav has joint-convexity property). For arbitrary sets of quantum
measurements {Mα }α , {Nα }α and probability distributions {pα }, we have

dmav

 Õ
α

pαMα ,

Õ
α

pαNα

!
≤

Õ
α

pαd
m
av (Mα ,Nα ) . (3.75)

Proof. The proof is analogous to the one for states and follows from triangle
inequality, and absolute homogeneity:

dmav

 Õ
α

pαMα ,

Õ
α

pαNα

!
≤

Õ
α

dmav (pαMα , pαNα ) =
Õ
α

pαd
m
av (Mα ,Nα ) .

(3.76)
�

Lemma 14 (Data-processing inequalities for average-case distance between
measurements). Average-case distance between quantum measurements is
monotonic with respect to a unital pre- and general post-processing, i.e. for
a stochastic matrix Λ and a general unital CPTP map Φ, we have

dmav(Λ ◦M ◦Φ,Λ ◦ N ◦Φ) ≤ dmav(M,N) . (3.77)

Proof. We will show, that the average-case distance between measurements is
monotonic with respect to post-processing. Since the outcome of a measure-
ment is classical, we will consider only classical post-processing, given by a
stochastic matrix Λ. We denote by ∆j = M j − N j . We will use the fact, that each
term in the sum which defines dmav(M,N), is absolutely homogeneous and obeys
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the triangle inequality (see Eq. (3.25) and discussion under Eq. (3.70))

dmav(Λ ◦M,Λ ◦ N) =

=
1

2d

nÕ
i

s
| |
Õ
j

Λi j∆j | |
2

HS + | tr
Õ
j

Λi j∆j |2 ≤

≤ 1

2d

nÕ
i

sÕ
j

| |Λi j∆j | |
2

HS +
Õ
j

| trΛi j∆j |2

=
1

2d

nÕ
i

sÕ
j

Λ2

i j
| |∆j | |

2

HS +
Õ
j

Λ2

i j
| tr∆j |2

≤ 1

2d

nÕ
i ,j

Λi j

q
tr (∆j )2 + (tr∆j )2 =

=
1

2d

nÕ
j

q
tr (∆j )2 + (tr∆j )2 = d

m
av(M,N) .

(3.78)

In the first inequality we used the triangle inequality for both terms inside the
square root, the second equality follows from absolute homogeneity of both
terms (note that Λi ,j are nonegative), while the second inequality is a conse-
quence of subadditivity of the square root function.
In order to show that the average-case distance between quantum measure-

ments is monotonic with respect to unital pre-processing, we consider a general
unital CPTP mapΦ. Note, that the adjoint mapΦ∗ is also unital and CPTP. Recall
that we can look at the adjoint action of the channel on the effects of M as

trMiΦ(ρ) = trΦ∗(Mi )ρ . (3.79)

The fact, thatΦ∗ is unital assures us thatM′with effects {Φ∗(Mi )}i forms a POVM
. Now we consider the basic terms, which define dmav, first we see (again using
Uhlmann’s theorem [112] and Schur convexity of HS-norm)

‖Φ∗(∆i )‖2HS ≤ ‖∆i ‖2HS . (3.80)

Next, since Φ∗ is trace-preserving we have

tr(Φ∗(∆i ))
2
= tr(∆i )

2
, (3.81)

which finishes the proof of monotonicity with respect to unital pre-processing.
�

Lemma 15 (Separation between dmav and dop). For any quantum measurements
M,N ∈ P(Hd), we have

a dmav(M,N) ≤ dop(M,N) ≤ d dmav(M,N) , (3.82)

where a = 0.31.
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Proof. The lower bound follows from Theorem 2. For the upper bound, we di-
rectly calculate

dop(M,N) =
1

2
max
ρ

Õ
i

| tr(Mi − N i )ρ | ≤
1

2

Õ
i

q
‖ (Mi − N i )‖2HS ≤

≤ 1

2

Õ
i

q
‖ (Mi − N i )‖2HS + tr(Mi − N i )2 = d dmav(M ,N ) .

�

The following example attains bound in Lemma 15 up to a constant.

Example 10 (Swapping two outcomes of standard measurement). Consider
computational basis measurement P inHd with effects Pi = |i 〉〈i |), and second
measurementM that is obtained from P by exchanging the first two effects, leav-
ing others intact, i.e., M1 = |2〉〈2| ,M2 = |1〉〈1|, and Mi = |i 〉〈i | for i = 3, . . . , d.
In this scenario, direct calculation yields

dmav(P,M) =
√
2
1

d
,

dop(P,M) = 1 .

The above implies that in the asymptotic limit, similarly to Example 8 for states,
considered measurements can be distinguished perfectly with optimal strategy,
while randomized one will not work. On the other hand, if we interpret the sec-
ond measurement M as a noisy version of target P, then this particular type of
noise (that swaps two measurement outcomes) will not highly affect the results
of generic experiments.
We note that the above example, together with asymptotic separation, can

be easily generalized to a scenario where the second measurement, instead of
swapping only 2 outcomes of P, swaps some constant number of them.

Example 11 (Counterexample for data-procesing inequality for quantum mea-
surements). Consider POVMs P and M from previous Example 10. Consider
now a non-unital channel Λ that regardless of the input state prepares a state
|1〉〈1| (which is a possible choice for optimal discriminator of POVMs M and P).
Dual action of this channel on POVM’s effects is Λ†(Mi ) = tr(Mi |1〉〈1|) É. The
direct calculation, together with results from the previous example, yields

dmav(P ◦Λ,M ◦Λ) =
r
1 +

1

d
>

√
2
1

d
= dmav(P,M) .

3.6.3 Quantum channels

The following Table 3.3 summarizes properties of the quantum average-case
distance between channels and compares it to the worst-case diamond-norm
distance. Compared to previous Tables, here we also consider two additional
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properties relevant for quantum channels, namely stability and chaining [111]
which for average-case distance hold for unital quantum channels. Stability
means that a given distance measure does not change if a channel is extended
by an identity channel. In other words, trivial extensions of maps by an ancillary
system do not affect their distance measure. Chaining means that distance be-
tween multiple compositions of the channel is at most a sum of the distances
between constituting channels. If one sequence is a composition of target gates,
and the other is their noisy version, this property implies that the total error is at
most additive in a given distance measure.

Property Comparison

Function

Worst-case distance:
d⋄ (Λ,Γ ) = | |Λ − Γ | |⋄
Average-case distance:

dchav (M,N) =
1

2

q
‖JΛ − JΓ ‖2HS + tr

(
(Λ − Γ ) [τd]2

)

(See Theorem 3 and Lemma 16

Subadditivity
Both distances satisfy:

d(Λ1 ⊗ Λ2,Γ1 ⊗ Γ2) ≤ d(Λ1,Γ1) + d(Λ2,Γ2)

(See Lemma 17)

Joint Convexity
Both distances satisfy:

d (
Í

α pαΛα ,
Í

α pαΓα ) ≤
Í

α pαd (Λα ,Γα )

(See Lemma 18)

Data Processing
Inequality

Worst-case distance:
d⋄(Φo ◦Λ ◦Φi ,Φo ◦ Γ ◦Φi ) ≤ d⋄(Λ,Γ ) for CPTP Φi , Φo

Average-case distance:
dchav (Φo ◦Λ ◦Φi ,Φo ◦ Γ ◦Φi ) ≤ dchav (Λ,Γ ) for unital Φi , Φo

(See Lemma 19)

Table 3.3: Summary of the mathematical properties of worst-case and average-case
distances between quantum channels.

Lemma 16 (dchav fulfills axioms of a metric). Let d
ch
av , denote average distances

between channels defined in Eq. (3.28) as

dchav (Λ,Γ ) B
1

2

q
‖JΛ − JΓ ‖2HS + tr

(
(Λ − Γ ) [τd]2

)
.

Then dchav satisfies axioms of ametric in space of quantum channels. Specifically,
it satisfies the triangle inequality, symmetry, and identity of indiscernibles:

dchav (Λ,Γ ) ≤ dchav (Λ,Φ) + dchav (Φ,Γ ) for all Λ,Γ ,Φ ∈ CPTP(Hd) (3.83)
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dchav (Λ,Γ ) = d
ch
av (Γ ,Λ) for all Λ,Γ ∈ CPTP(Hd) (3.84)

dchav (Λ,Γ ) = 0 ⇐⇒ Λ = Γ for all Λ,Γ ∈ CPTP(Hd) . (3.85)

Note, that dchav (Λ,Γ ) is absolute homogeneous, i.e. d
ch
av (sΛ, sΓ ) = |s |dchav (Λ,Γ ).

Proof. Note that dchav is a function of a distance measure (‖JΛ − JΓ ‖H S ) and

a term (
q
tr
(
(Λ − Γ ) [τd ]2

)
), which treated as a function, obeys the triangle in-

equality. Since the function (a, b) ↦→
p
|a |2 + |b |2 is subadditive and increasing

in each argument, thus dchav obeys triangle inequality. Symmetry and identity of
indiscernibles follows from direct inspection. �

Lemma17 (dchav is subadditive). For arbitrary quantumchannelsΛ1,Γ1 ∈ CPTP(H),
Λ2,Γ2 ∈ CPTP(Ãd ′

), we have

dchav (Λ1 ⊗ Λ2,Γ1 ⊗ Γ2) ≤ dav(Λ1,Γ1) + dav(Λ2,Γ2) . (3.86)

Proof. We begin with triangle inequality

dchav (Λ1 ⊗ Λ2,Γ1 ⊗ Γ2) ≤ dchav (Λ1 ⊗ Λ2,Γ1 ⊗ Λ2) + d
ch
av (Γ1 ⊗ Γ2,Γ1 ⊗ Λ2) . (3.87)

Now we consider

dchav (Λ1 ⊗ Λ2,Γ1 ⊗ Λ2) =

vut
‖JΛ1⊗Λ2

− JΓ1⊗Λ2
‖2HS + tr

 
((Λ1 − Γ1) ⊗ Λ2)

(
Édd ′

dd ′

)2!
.

(3.88)
First we note, that JΛ1⊗Λ2

is permutationally similar, to JΛ1
⊗ JΛ2
. To explain

that, let us note that in the definition of JΛ1
, the channel Λ1 ⊗ I naturally di-

vides the space into subsystems that we can label as 1 and 2 (two halves of
the maximally entangled state). In the definition of JΛ2

, the analogous division
leads to subsystems with labels 3 and 4. Hence, if we take the tensor product
of the Choi states, we need to restore the ordering of the subsystems in order to
recover the Choi matrix of the tensor product of the channels. This is done by
application of the permutation Ó23 between subsystems 2 and 3, i.e., we have
JΛ1⊗Λ2

= Ó23

(
JΛ1

⊗ JΛ2

)
Ó23. We can now use this fact, together with the stan-

dard properties of the HS norm, to obtain

‖JΛ1⊗Λ2
− JΓ1⊗Λ2

‖HS = ‖JΛ1
⊗ JΛ2

− JΓ1 ⊗ JΛ2
‖HS

= ‖JΛ1
− JΓ1 ‖HS‖JΛ2

‖HS
≤ ‖JΛ1

− JΓ1 ‖HS .
(3.89)

Next, we note

tr

 
((Λ1 − Γ1) ⊗ Λ2)

(
Édd ′

dd ′

)2!
= tr

 
(Λ1 − Γ1)

(
Éd

d

)2!
tr

 
Λ2

(
Éd ′

d ′

)2!

≤ tr
 
(Λ1 − Γ1)

(
Éd

d

)2!
.

(3.90)
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Combining the above we get

dchav (Λ1 ⊗ Λ2,Γ1 ⊗ Λ2) ≤

vut
‖JΛ1

− JΓ1 ‖2HS + tr
 
(Λ1 − Γ1)

(
É

d

)2!
= dchav (Λ1,Γ1) .

(3.91)
We can analogously bound dchav (Γ1⊗Γ2,Γ1⊗Λ2) ≤ dchav (Γ2,Λ2) and using Eq. (3.87)
we obtain the result. �

Lemma 18 (dchav has joint-convexity property). For arbitrary sets of quantum
channels {Λα }α , {Γα }α and probability distributions {pα }, we have

dchav

 Õ
α

pαΛα ,

Õ
α

pαΓα

!
≤

Õ
α

pαd
ch
av (Λα ,Γα ) . (3.92)

Proof. The proof is analogous to the one for states and measurements and fol-
lows from triangle inequality, and absolute homogeneity of dchav . �

Lemma 19 (Data-processing inequalities for average-case distance between
channels). Average-case distance between quantum channels is monotonic
with respect to unital pre- and postprocessing, i.e. for a unital maps Φo ,Φi ,
we have

dchav (Φo ◦Λ ◦Φi ,Φo ◦ Γ ◦Φi ) ≤ dchav (Λ,Γ ). (3.93)

Proof. The inequality related to the postprocessing follows directly analogous
results for states, in order to show the monotonicity with respect to the prepro-
cessing inequality we write, for unital Φ

dchav (Λ ◦Φ,Γ ◦Φ)

=
1

2

s
‖JΛ◦Φ − JΓ◦Φ‖2HS + tr

(
(Λ − Γ ) [

É

d
]

)2
.

(3.94)

We can consider only the term ‖JΛ◦Φ − JΓ◦Φ‖HS, since the second one does not
change under preprocessing by a unital map. First, we write a norm in terms of
superoperators, i.e.

‖JΛ◦Φ − JΓ◦Φ‖HS =
��(Λ̂ − Γ̂ )Φ̂

��
HS
, (3.95)

where Λ̂ denotes the superoperator matrix ([69]) of channel Λ. Now we use
inequality

‖AB ‖HS ≤ ‖A‖HS ‖B ‖∞ (3.96)

and write
‖JΛ◦Φ − JΓ◦Φ‖HS ≤

��Λ̂ − Γ̂
��
HS

��Φ̂
��
∞ . (3.97)

Now since for any unital map we have
��Γ̂

��
∞ = 1 (see [115, Theorem 1]), we

obtain the result. �
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Lemma 20 (Stability property of average-case distance between unital chan-
nels). Average-case distance between unital quantum channels fulfills stability
property [111], i.e. for unital maps Λ,Γ , and identity channel I acting on arbi-
trary dimension, we have

dchav (Λ ⊗ I,Γ ⊗ I) = dchav (Λ,Γ ) . (3.98)

Proof. For unital channels we have dchav (Λ,Γ ) =
1

2
| |JΛ − JΓ | |H S . We now recall

that for any channelsΛ,Γ , Choi matrix JΛ⊗Γ is permutationally similar to JΛ ⊗JΓ .
This allows to rewrite the HS norm as

| |JΛ⊗I − JΓ⊗I | |HS = | | (JΛ − JΓ ) ⊗ JI | |HS = | |JΛ − JΓ | |HS | |JI | |HS|   {z   }
=1

= | |JΛ − JΓ | |HS ,

which concludes the proof. �

Remark 10. For generic, non-unital channels, the expression for average-case

distance has additional term tr
(
(Γ −Λ) ( É

d
)
)2
. If we extend our channels by iden-

tityId ′ on dimension d ′, this ’non-unitality’ term changes to tr
(
((Γ −Λ) ⊗ Id ′) ( É

dd ′ )
)2

=

1

d ′ tr
(
(Γ −Λ) ( É

d
)
)2
. Therefore, the contribution to the average-case distance of

the ’non-unitality’ decreases as d ′ increases. Note that this scenario corre-
sponds to channel discrimination (via random circuits) with the use of an ancil-
lary system.

Lemma 21 (Chaining property of average-case distance between unital chan-
nels). Average-case distance between unital quantum channels fulfills chaining
property [111], i.e. for unital maps Λ1,Λ2,Γ1,Γ2, we have

dchav (Λ1 ◦Λ2,Γ1 ◦ Γ2) ≤ dchav (Λ1,Γ1) + d
ch
av (Λ2,Γ2). (3.99)

Proof. To prove the theorem, we apply triangle inequality followed by the data-
processing inequality for unital channels (Lemma 19)

dchav (Λ1 ◦Λ2,Γ1 ◦ Γ2) ≤ dchav (Λ1 ◦ Γ2,Γ1 ◦ Γ2) + dchav (Λ1 ◦ Γ2,Λ1 ◦Λ2) ≤ (3.100)

≤ dchav (Λ1,Γ1) + d
ch
av (Λ2,Γ2) . (3.101)

�

Remark 11. Wenote that for generic, non-unital channels, the chaining property
of average-case distance does not hold. To see that, we note that if we choose
channels Λ1 = Γ1 to be the same, the chaining property effectively reduces to
data-processing inequality, which we know does not hold for generic channels
(see below for a counterexample).

Lemma 22 (Separation between dchav and d⋄). For any quantum channels Λ,Γ ∈
CPTP(Hd), we have

ach dchav (Λ,Γ ) ≤ d⋄(Λ,Γ ) ≤ d
3

2 dchav (Λ,Γ ) , (3.102)

where ach = 0.087.
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Proof. The lower bound is a consequence of Theorem 3. To show the other
inequality we begin with the upper bound for diamond norm (see [116, Thm. 2]
and [117, Prop. 1]), which for Hermiticity preserving operation can be written in
our notation as

d⋄(Λ,Γ ) ≤
d

2
‖tr2( |JΛ − JΓ |)‖∞ , (3.103)

Next express the operator norm via maximization over pure states on the first
subsystem

‖tr2( |JΛ − JΓ |)‖∞ = max
ψ∈S(Hd)

| tr (ψ ⊗ Éd |JΛ − JΓ |) | . (3.104)

Applying to the above Cauchy-Schwarz inequality we obtain

‖tr2( |JΛ − JΓ |)‖∞ ≤ max
ψ∈S(Hd)

‖ψ ⊗ Éd‖HS ‖JΛ − JΓ ‖HS =
√
d ‖JΛ − JΓ ‖HS .

(3.105)
Combining the above we obtain the desired result

d⋄(Λ,Γ ) ≤
d

2

√
d ‖JΛ − JΓ ‖HS ≤ d

3

2 dchav (Λ,Γ ) . (3.106)

�

Example 12 (Separation example). Let us consider even dimensional Hilbert
space Hd and a Hermitian matrix A, such that trA = 0 and A2

= Éd. Next, we
define a pair of channels Λ and Γ by their Jamiołkowski states as

JΛ =
1

d 2
Éd 2 ,

JΓ =
1

d 2
Éd 2 − 1

d 2
|ψ〉〈ψ | ⊗ A ,

(3.107)

where ψ ∈ S(Hd) is an arbitrary pure state. The diamond norm between Λ and
Γ can be calculated easily, using an alternative formula for the diamond norm
for Hermiticity preserving operations (see e.g. [118, Eqn. (11)]), i.e.,

‖Λ − Γ ‖⋄ = d max
ρ∈D(Hd)

‖ (√ρ ⊗ É)JΛ−Γ (
√
ρ ⊗ É)‖1

= d max
ρ∈D(Hd)

‖ (√ρ ⊗ É) (
1

d 2
|ψ〉〈ψ | ⊗ A) (

√
ρ ⊗ É)‖1 =

1

d
‖A‖1 = 1.

(3.108)

The average distance can be evaluated as

dchav (Λ,Γ ) =
1

2

q
‖JΛ−Γ ‖2HS + ‖Λ(É/d ) − Γ (É/d )‖2HS

=
1

2

r
‖ 1

d 2
|ψ〉〈ψ | ⊗ A‖2HS + ‖ 1

d 2
tr1( |ψ〉〈ψ | ⊗ A)‖2HS

=
1

2

r
1

d 4
‖A‖2HS +

1

d 4
‖A‖2HS =

√
2

2d
3

2

.

(3.109)
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Which gives us finally the separation of order d
3

2 ,

1

2
= d⋄(Λ,Γ ) = d

3

2

1
√
2

dchav (Λ,Γ ). (3.110)

Example 13 (Counterexample for general post-processing monotonicity for
quantumchannels). Consider two state-preparation channels acting onN-qubit
system as Λ(ρ) = tr(ρ) |0〉〈0| ⊗ É

2N −1 and Γ (ρ) = tr(ρ) |1〉〈1| ⊗ É

2N −1 , for any input
state ρ ∈ D(H). Then we have

dchav (Λ,Γ ) =
1

2

r
1

d
(1 +

1

d
) (3.111)

d⋄(Λ,Γ ) = 1 , (3.112)

where expression for average-case distance follows fromdirect calculation, and
the value of diamond norm follows from the fact that channels always prepare
states that are orthogonal on first qubits, and thus can be perfectly distinguished.
Now consider additional non-unital conditional state-preparation channel Λ̃

that acts as Λ̃( |0〉〈0| ⊗ σ) = ψ and Λ̃( |1〉〈1| ⊗ σ) = ψ⊥ for any σ , where ψ,ψ⊥

are two orthogonal pure states. Note that the composed action of the channels
reduces to state-preparation channels Λ̃ ◦Λ(ρ) = ψ and Λ̃ ◦ Γ (ρ) = ψ⊥ for any
ρ. Direct computation together with Eq. (3.111) yields

dchav (Λ̃ ◦Λ, Λ̃ ◦ Γ ) =
r

1

2
(1 +

1

d
) >

1

2

r
1

d
(1 +

1

d
) = dchav (Λ,Γ ) .

Example 14 (Counterexample for general pre-processingmonotonicity for quan-
tum channels). Consider two perfectly distinguishable unitary channels of size
d > 2, ΛU : ρ ↦→ UρU † and ΛV : ρ ↦→V ρV †.
The average distance can be calculated directly and is equal to (see also

Example 19)

dchav (ΛU ,ΛV ) =
1

2

r
2 − 2

d 2
| trU †V |2 . (3.113)

Since channels ΛU and ΛV are perfectly distinguishable, let |ψ〉 be the optimal
discriminator, i.e. the state for which 〈ψ |U †V |ψ〉 = 0. Note, that in the case
of unitary channels, one does not need to attach an additional system in or-
der to perform optimal discrimination. Now we consider a channel Γ : ρ ↦→
tr(ρ) |ψ〉〈ψ |, which prepares the optimal discriminator. We then have

JΛU ◦Γ = É/d ⊗ U |ψ〉〈ψ |U †
,

JΛV ◦Γ = É/d ⊗V |ψ〉〈ψ |V †
.

(3.114)
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Direct computations yield the following result

dchav (ΛU ◦ Γ ,ΛV ◦ Γ ) =

=
1

2

q
‖É/d ⊗ (U |ψ〉〈ψ |U † −V |ψ〉〈ψ |V †)‖2HS + tr(U |ψ〉〈ψ |U † −V |ψ〉〈ψ |V †)2 =

=
1

2

r
2

d
+ 2.

(3.115)

Finally, we obtain that the data processing inequality for general pre-processing
does not hold.

dchav (ΛU ◦ Γ ,ΛV ◦ Γ ) > dchav (ΛU ,ΛV ). (3.116)

If we chooseU = É,V = d i ag (1,−1, 1, . . . , 1)weget dchav (ΛU ,ΛV ) =
1

2

q
2 − 2

d 2
(d − 2)2 =

1

d

p
2(d − 1).
In fact, similar calculations can be performed on any distinguishable chan-

nels, with the pre-processing channel chosen to be the preparation of the opti-
mal discriminator.

3.7 More use cases

In previous parts of the Chapter, we discussed some specific scenarios in which
scaling of quantum average-case distances with system size provided some in-
sight into various areas of quantum information. In this part, we investigate some
further exemplary scenarios, and we provide a discussion of the consequences
of our findings.

3.7.1 Convergence to uniform distribution

One particularly interesting consequence of our main theorems is that average-
case distances allow us to easily study a convergence of the average Total-
Variation distance between the noisy distribution (generated by a non-ideal quan-
tum device) and the uniform distribution (the fact which was used multiple times
in Section 3.5). To this aim, one needs to calculate an average-case distance
between a noisy state, measurement, or channel, and the maximally mixed state,
trivial POVM, or maximally depolarizing channel, respectively. We summarize
those observations in the following Lemmas 23, 24, 25 – the proofs follow di-
rectly from Theorems 1, 2, and 3, respectively. In what follows we denote uni-
form distribution as puniform, meaning puniform

i
=

1

d
for all i = 1, . . . , d .

Lemma 23. [Noisy states – convergence to uniform distribution] Letψ be a pure
state and Λ a quantum channel. Then we have

Å
U∼ν
TV(pΛ(ψ),U

, puniform) ≈ dsav(Λ(ψ),
É

d
) =

1

2

r
tr
(
(Λ(ψ))2

)
− 1

d
. (3.117)
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In the above, the ≈ sign means the approximation in a sense of Eq. (3.16), i.e.,
that we have

ℓ (δ′) a dsav(ρ,σ) ≤ Å
U∼ν
TV(pρ,U , pσ,U ) ≤ u (δ′) A dsav(ρ,σ) ,

for constants and functions specified in Theorem 1, with ρ = Λ(ψ) and σ =
É

d
.

The notation pΛ(ψ),U is the same as for Theorem 1.

From the above, it follows that the convergence of noisy distribution to the
uniform in random circuits setting is controlled by the purity of the output state.
For quantum measurements and channels, we have similar expressions.

Lemma 24. [Noisy measurements – convergence to uniform distribution] Let M
be a generic d-outcome quantum measurement on d-dimensional space, and
MI a trivial POVM s.t. M I

i
=

É

d
for each i = 1, . . . , d . Then we have

Å
V∼ν
TV(pM,ψV , puniform) ≈ dmav(M,MI) =

1

2d

dÕ
i=1

r
tr
(
M 2

i

)
+ (trMi − 1)2 − 1

d
.

(3.118)

In the above, the ≈ sign means the approximation in a sense of Eq. (3.24), i.e.,
that we have

ℓ (δ′) a dmav(M,N) ≤ Å
V∼ν
TV(pM,ψV , pN,ψV ) ≤ u (δ′) A dmav(M,N) ,

for constants and functions specified in Theorem 2, with N = MI . The notation
pM,ψV is the same as for Theorem 2.

Lemma 25. [Noisy channels – convergence to uniform distribution] Let Λ be a
generic quantum channel and Λdep be a maximally depolarizing channel, i.e.,
Λdep(ρ) =

É

d
for any state ρ. Then we have

Å
V∼ν

Å
U∼ν
TV(pΛ,ψV ,U , puniform) ≈ dchav (Λ,Λdep) =

1

2

vut
tr
(
J 2

Λ

)
+ tr

 (
Λ(

É

d
)

)2!
− 1

d

(
1 +

1

d

)

(3.119)

In the above, the ≈ sign means the approximation in a sense of Eq. (3.27), i.e.,
that we have

ℓch(δ′) ach dchav (Λ,Γ ) ≤ Å
V∼ν

Å
U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) ≤ uch(δ′) Ach dchav (Λ,Γ ) ,

for constants and functions specified in Theorem 3, with Γ = Λdep. The notation
pΛ,ψV ,U is the same as for Theorem 3.
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3.7.2 Further examples

Example 15 (Two pure states). For two pure states ψ and φ we have

dsav (ψ,φ) =
1
√
2

p
1 − tr (ψφ) ,

dtr (ψ,φ) =
p
1 − tr (ψφ) .

Therefore, in this case, we see that dav (ψ,φ) =
1√
2
dtr (ψ,φ), which gives only

constant separation between average-case and worst-case scenarios.

The consequences of the above example are twofold, depending on the per-
spective we adopt. First, if we wish to perform a task of state discrimination
between two pure states, then the above identity implies that there exists a strat-
egy that uses random quantum circuits that is worse than the optimal strategy
only by a constant. Second, if we treat ψ as our target state and φ as its noisy
version affected by unwanted unitary rotation, then this type of noise will highly
affect the quality of our results. Specifically, for generic quantum states, it will
behave similarly to the worst-case scenario.

Example 16 (Pauli eigenstates and tensor product Pauli noise – general case).
Consider state ψpauli = ⊗N

i=1
|±ri 〉〈±ri |, where ri ∈ {x , y , z }, i.e., |±ri 〉 is any

Pauli eigenstate on qubit i (with eigenvalue +1 or −1.). Consider tensor prod-
uct Pauli channel Λpauli = ⊗N

i=1
Λ
pauli
i
, where single-qubit channel is Λpauli

i
(ρ) =Í

j=1 p
(i )

j
σj ρσj with j ∈ {1, x , y , z }, σ1 = É, and p (i )

j
≥ 0,

Í
j p

(i )

j
= 1. Define

q (i )
= p

(i )

1
+ p

(i )
ri , i.e., a probability of applying on qubit i a gate that stabilizes

the state of that qubit (namely, either identity or Pauli matrix of which |±ri 〉 is an
eigenstate). Furthermore, assume that for each qubit i we have q (i ) ≥ 1

2
. Then

we have

dsav(Λ
pauli(ψpauli),

É

d
) =

1

2

r
ΠN
i=1

(
1 − 2q (i ) (1 − q (i ))

)
− 1

d
, (3.120)

dsav(Λ
pauli(ψpauli),ψpauli) =

1

2

q
1 − 2ΠN

i=1
q (i ) + ΠN

i=1
(1 − 2q (i ) (1 − q (i ))) ,

(3.121)

Proof. We start by analyzing the effects of Pauli noise on single-qubit Pauli
eigenstate. We first write |±ri 〉〈±ri | = 1

2

(
É ± σri

)
and evaluate

Λ
pauli
i

( |±ri 〉〈±ri |) =
1

2

(
É ±

(
(p

(i )

1
+ p

(i )
r − p

(i )

k,ri
− p

(i )

l,ri

))
= (3.122)

=
1

2

(
É ±

(
(2(p

(i )

1
+ p

(i )
r ) − 1

))
= (3.123)

=
1

2

(
É ±

(
2q (i ) − 1

))
, (3.124)
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where p (i )

k,ri
and p (i )

l,ri
are error probabilities corresponding to two Pauli matrices

that are not σri . We now notice that the above state has two eigenvalues which
are 1

2
(1 ± |2q (i ) − 1|), which for assumed regime q (i ) ≥ 1

2
gives eigenvalues q (i )

and (1 − q (i )).
To get Eq. (3.120) we refer to Lemma 23 and use the fact that the purity of

tensor product states is a product of purities. For a single qubit, the purity of a

noisy state is tr
(
Λ
pauli
i

( |±ri 〉〈±ri |)2
)
= (q (i ))2 + (1 − q (i ))2 = 1 − 2q (i ) (1 − q (i )),

which for multiple qubits yields Eq (3.120).
To get Eq. (3.121), we first diagonalize all noisy Pauli states, getting global

state represented as
ËN

i=1

(
q (i ) |0〉〈0| + (1 − q (i )) |1〉〈1|

)
. In this basis, the noise-

less Pauli eigenstate is simply |0〉〈0|⊗N (note that both states are simultaneously
diagonalizable). Having this in mind, we want to decompose the distance be-
tween states | |Λpauli(ψpauli) − ψpauli) | |2

H S
into parts that are easy to handle. To

this aim, we use the fact that for any states ρ and ρ̃, the HS distance can be
written as | |ρ − ρ̃ | |2

H S
= tr ρ2 + tr ρ̃2 − 2 tr (ρ ρ̃). In our case ρ = Λpauli(ψpauli)

and ρ̃ = ψpauli. Since the Pauli state is pure we get tr ρ̃2 = 1, while the purity of
ρ was already calculated above. The cross-term can be evaluated by recalling
that in basis we consider Pauli eigenstate is simply |0〉〈0|⊗N , we thus need to
simply take the value of the first matrix element of ρ, obtaining tr (ρ ρ̃) = Πiq

(i ) .
Summing up and inserting into the definition of average-case distance yields
Eq. (3.121). �

We note that the above derivation is a more general form of Example 5, in
whichwe provide a discussion on its consequences for simplified figures of merit
(averages of noise parameters over qubits).
We now consider a scenario where our target POVM is computational-basis

measurement P, and we wish to calculate its distance from some other POVMM.
This choice ismotivated by the fact that in quantum computing the computational-
basis measurement is often a model for ideal detector [17] , and M can be
thought of as its noisy implementation. In particular, we considered a situation in
which M = T P, where T is a left-stochastic map, i.e., its columns’ are probabil-
ity distributions. Such noise is equivalent to classical post-processing of ideal
statistics (i.e., probabilities one would have obtained on P), hence we call it clas-
sical noise. This is a practically relevant scenario, as it has been experimentally
observed that classical noise is a dominant type of readout noise in contempo-
rary quantum devices based on superconducting qubits [42].
We now define, in analogy to quantum average-case distance, the average-

case classical distance between POVMs M and N

dclassicalav (M,N) B Å
|k 〉〈k |
TV (p ( |k 〉〈k | ,M) , p ( |k 〉〈k | ,N)) , (3.125)

where by Å
|k 〉〈k |
we denote average over all classical deterministic states |k 〉〈k |.

The above distance turns out to be a helpful tool in investigating some of the
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properties of quantum average-case distances for quantum measurements. In
our considerations about the distances between measurements, the following
Lemma 26 and Lemma 27 proved useful.

Lemma 26 (Average-case quantum vs classical distance). Let P be measure-
ment in computational basis, and T arbitrary stochastic map, i.e.,

Í
i Ti j = 1.

Define POVM TP via (T P)i =
Í

j Ti jPj . Then we have

1

2
dclassicalav (TP,P) ≤ dmav(T P,P) . (3.126)

Proof. We start by directly computing classical distance from Eq. (3.125)

dclassicalav (TP,P) =
1

2d

dÕ
k=1

dÕ
i=1

| tr( |k 〉〈k | (
Õ
j

Ti j |j 〉〈j | − |i 〉〈i |)) | = 1

2d

dÕ
k=1

dÕ
i=1

|Ti k − δk ,i |

=
1

2d

dÕ
k=1

(1 −Tk k +
Õ
i,k

Ti k ) =
1

2d

dÕ
k=1

2(1 −Tk k ) = 1 − tr(T )

d
,

where we used the fact thatT is left-stochastic, hence
Í

i,k Ti k = 1 −Tk k . Now
we notice that

dmav(TP,P) =
1

2d

dÕ
i=1

s
(1 − Ti i )2 + (1 −

Õ
j

Ti j )2 +
Õ
k,i

T 2

i k
≥ (3.127)

≥ 1

2

1

d

dÕ
i=1

p
(1 −Ti i )2 =

1

2
(1 − tr(T )

d
) , (3.128)

thus the expression on the RHS of Eq. (3.127) is exactly equal to 1

2
dclassicalav (TP,P),

which concludes the proof. �

Lemma 27 (Distance of classical part of the measurement noise). Let M be
an arbitrary d-outcome POVM, and P measurement in the computational basis.
Decompose M as M = T P + ∆, where T P is a POVM obtained by taking only
diagonal elements of operators M, i.e., (T P)i B diag(Mi ) . Then we have

dmav(T P,P) ≤ dmav(M,P) . (3.129)

Proof. Consider an action of (the dual of) completely dephasing noise Λ†
deph on

POVMs’ effects, namely Λ†
deph(Mi ) = (TP)i (this is because, to begin with, we

defined T P as diagonal part of POVM M). Since dephasing noise is unital and
it preserves computational-basis measurement P, the above property follows
directly from data-processing inequality for unital pre-processing of quantum
measurements proved in Lemma 14. �
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Remark 12. We note that while the decomposition of POVMM = T P+∆ into di-
agonal and off-diagonal parts may seem arbitrary, it has been in fact previously
used in the context of measurement error mitigation. In particular, the TP can be
interpreted as a "classical part" of the noise and if we are able to reconstruct T
(for example, using Diagonal Detector Tomography), we can use it to reduce the
noise via classical post-processing of the statistics estimated on faulty detector
M [65; 119; 120].

Corollary 2. By combining Lemma 26 with Lemma 27, we immediately get that
for any POVM decomposed into the diagonal and off-diagonal part as M =

T P + ∆, its distance from standard measurement can be bounded from below
via

dmav(M,P) ≥
1

2
dclassicalav (TP,P) . (3.130)

Let us now consider a simplified scenario where the target POVM is the com-
putational basis measurement, and its noisy version corresponds to local, sym-
metric classical noise.

Example 17 (Computational basis and local symmetric bitflip). Let P denote
measurement in computational basis and its noisy version TsymP affected by

noise T = ⊗N
i=1

Λ
(sym)
i
, whereΛ(sym)

i
= p (i )

É+ (1−p (i ))σx denotes local stochastic
noise describing symmetric bitflip specified by parameter pi (bitflip error proba-
bility). In this case, we have

dmav
(
TsymP,P

)
=

1

2

q
1 − 2ΠN

i=1
(1 − pi ) + ΠN

i=1
(1 − 2pi (1 − pi )), (3.131)

dop
(
TsymP,P

)
= 1 − ΠN

i=1 (1 − pi ) , (3.132)

dmav(T
symP,MI) =

1

2

r
ΠN
i=1

(1 − 2pi (1 − pi )) −
1

d
, (3.133)

where N is the number of qubits.

Proof. To obtain (3.131) we calculate explicitly

dmav(P, TP) =
1

2d

dÕ
i=1

s
(1 − Ti i )2 + (1 −

Õ
j

Ti j )2 +
Õ
k,i

T 2

i k
= (3.134)

=
1

2d

dÕ
i=1

s
(1 − Ti i )2 +

Õ
k,i

T 2

i k
, (3.135)

where the first equality follows from the fact that T is bistochastic. Then we
notice that for identical symmetric bitflip, each term on RHS is the same, namely
for each i we have

(1 − Tsym
i i

)2 +
Õ
k,i

(Tsym
i k

)2 = 1 − 2Tsym
i i

+
Õ
k

(Tsym
i k

)2 . (3.136)
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Furthermore, from the product structure of T it follows that

Tsym
k k

= ΠN
i=1(1 − pi ) (3.137)

,

Õ
k

(Tsym
l k

)2 = ΠN
i=1((1 − pi )

2 + p2i ) . (3.138)

Summing over i = 1, . . . , d yields Eq. (3.131).
To compute (3.132) we notice that in case of (any) stochastic noise T affect-

ing standard measurement we have

dop(TP,P) = max
j

(1 −Tj j ) , (3.139)

which after substituting Tj j from Eq. (3.137) yields Eq. (3.132).
To obtain Eq. (3.133), we first notice that multiqubit symmetric bitflip is rep-

resented by a bistochastic map that does not change trace – thus second term
in Eq. (3.118) vanishes. Then we calculate explicitly the purity of i th effect as

tr
(
((TsymP)i )

2

)
=

Õ
k

(Tsym
i k

)2 . (3.140)

Combining the above observations with Eq. (3.137) yields Eq. (3.133). �

Lemma28 (Computational basis and local asymmetric bitflip). Consider a noisy
version TasymP of computational basismeasurement P, where Tasym = ⊗N

i=1
Tasym
i

is a tensor product, asymmetric stochastic map. For each qubit i , such map is
characterized by two parameters, pi (1|0) and pi (0|1), specifying the probability
of erroneously measuring 1 (0) if the input state was |0〉 (|1〉). Define average
error probability

qavi =
pi (1|0) + pi (0|1)

2
, (3.141)

and corresponding symmetric bitflip map Tav
i

= (1− qav
i
)É+ qav

i
σx , together with

global map Tav =
ËN

i=1 T
av
i
. Then we have

dmav(T
avP,P) ≤ dmav(TasymP,P) , (3.142)

dmav(T
avP,MI) ≤ dmav(TasymP,MI) . (3.143)

Proof. The proof uses data-processing inequality for unital channels and stochas-
tic post-processing proved in Lemma 14, as well as joint convexity property
from Lemma 13. The idea is to present a strategy that "symmetrizes" stochastic
noise on each qubit via randomized measurements and post-processing (while
not changing computational basis measurement P or trivial POVM MI). Con-
sider a strategy that applies combinations of X and É gates uniformly at random
just before measurement, and then applies a post-processing strategy that com-
bines the outcomes of measurements to "undo" the effects of the unital channel.
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Namely, for each qubit, if the applied gate was É do nothing, and if it was X then
flip the outcome. Such a strategy does not affect the computational basis mea-
surement nor a trivial POVM MI , so we need to work out the expressions for
twirled noisy measurement. The whole procedure corresponds to application of
a so-called superchannel (i.e., a generalization of a quantum channel to opera-
tions that transform quantum channels themselves) [40], but we can derive the
bounds for each “sub-channel” and then apply the joint-convexity property to
derive the desired lower bound. More explicitly, for a given combination of X
and É gates, let us label the corresponding unital pre-processing as Φα (this is
application of given combination of gates) and corresponding post-processing
as Λα (this is relabeling of measurement outcomes). We can write the resulting
twirled noisy measurement asÕ

α

pαΛα ◦ TasymP ◦Φα . (3.144)

Note that in our case, pα =
1

d
. From Lemma 14, we get that for each element α ,

we have

dmav(T
asymP,P) ≥ dmav(Λα ◦ TasymP ◦Φα ,Λα ◦ P ◦Φα ) . (3.145)

We now apply the above inequality for each element of a trivial convex combi-
nation and make use of the joint-convexity property of the AC distance

dmav(T
asymP,P) =

Õ
α

pαd
m
av(T
asymP,P) ≥

≥
Õ
α

pαd
m
av(Λα ◦ TasymP ◦Φα ,Λα ◦ P ◦Φα ) ≥

≥ dmav(
Õ
α

pαΛα ◦ TasymP ◦Φα ,

Õ
α

pαΛα ◦ P ◦Φα ) =

= dmav(T
avP,P) .

(3.146)

In the above, the final equality follows from direct calculation. Since the trivial
POVM is also invariant under this procedure, the same argument applies and we
conclude the proof.
We note that the above strategy was used for single-qubit error mitigation

in Ref. [121], and more general multi-qubit versions were considered in the
context of noise characterization and mitigation in Refs. [122; 123; 124]. We
briefly discuss it further in Section 4.2.3 in the next Chapter. �

From the Lemma 28 it follows that when studying the separation between
asymmetric stochastic noise and ideal measurement in the computational ba-
sis, one can instead study symmetric noise with "average" error probability (Eq.
(3.141)), which is easier to handle computationally. The same holds for study-
ing separation from a uniform distribution. The usefulness of this comes from
the fact that asymmetric bitflip is a more realistic model of measurement noise
than symmetric bitflip, (see, e.g., [42; 119]).
We now consider a few interesting scenarios for distances between channels.
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Example 18 (Two arbitrary state preparation channels). Denote by Λρ and Λσ

the state preparation channels that regardless of the input state always prepare
state ρ ∈ D(Hd) or σ ∈ D(Hd), respectively. Then we have

dchav (Λρ,Λσ) =

r
1 +

1

d

1

2
| |ρ − σ | |HS . (3.147)

Example 19 (Two arbitrary unitary channels). Denote by ΛU and ΛV the unitary
channels associated with unitaries U and V , i.e., ΛU (ρ) = UρU † for any state
ρ ∈ D(Hd). Then we have

dchav (ΛU ,ΛV ) =

s
1

2

(
1 −

| tr
(
U †V

)
|2

d 2

)
. (3.148)

Example 20 (Identity channel and tensor product of unitary rotations). Let I
denote identity channel, and ΛV be unitary channel corresponding to tensor-

product rotationV =
ËN

j=1 exp(i nj · σ
φj

2
), where |nj | = 1 and φj > 0. Assume

that
ÍN

j=1φj ≤ π
2
. Define φmax = maxj φj and φmin = minj φj . Then we have

dchav (I,ΛV ) ≤
√
N

φmax√
8

, (3.149)

d⋄(I,ΛV ) ≥
1
√
2

Nφmin . (3.150)

To obtain the above, we first note that since the distances are unitarily invari-
ant, we can rotate each unitary so it is a phase shift gate with an angle φj . To
get the first inequality, we calculate explicitly (see Example 19) dchav (I,ΛV ) =q

1

2
(1 − ÎN

j=1 cos
2(

φj

2
)). Then we use inequality cos2(

φj

2
) ≤ cos2(φmax

2
) for φj ∈

[0, π], and employ inequalities cos(x )2 ≥ 1 − x 2 and (1 − x )N ≥ 1 − Nx . To
get the second inequality we calculate diamond norm explicitly d⋄(I,ΛV ) =

2| sin(
ÍN

j=1

φj

2
) |, and employ inequality | sin(x ) | ≥ x

2
√
2
for x ∈

[
0,

π
2

]
.

From derivations in the above example it follows that if we adopt the perspec-
tive of average-case statistical distinguishability, any local coherent noise (when
the target operation is identity) can be viewed simply as a phase shift error. Fur-
thermore, for angles such that φmax

φmin
= O (1), we see that worst-case distance

grows quadratically faster than average-case.

Example 21. [Separable Pauli noise in the middle of the circuit – general case]
Consider tensor product Pauli channel Λpauli defined in Example 16. Then we
have

dchav (Λ
pauli
,Λdep) =

1

2

r
ΠN
i=1

| |pi | |2
2
− 1

d 2
, (3.151)
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dchav (Λ
pauli
,I) =

1

2

q
1 + ΠN

i=1
| |pi | |2

2
− 2ΠN

i=1
p i
1
, (3.152)

where | |pi | |2
2
=

Í
j (p

i
j
)2 is a Euclidean norm of the vector of noise coefficients

on i th qubit.

Proof. To begin the proof, we notice that the Pauli noise is a mixed unitary chan-
nel and is thus unital. Since both completely depolarizing and identity channels
are unital as well, in both average-case distances the terms that include the dif-
ference of the images of the maximally-mixed state under action of said chan-
nels equal 0 . We are therefore left with the task of calculating Hilbert-Schmidt
norms of relevant Choi matrices.
To show that Eq. (3.151) holds, we note that the purity of a tensor product

of Choi states is a product of purities – this follows from the fact that any Choi
matrix of product channel is permutationally similar to a tensor product of Choi
matrices of those channels. We thus need to consider only single-qubit purity
(note that this is analogous to proof for states in Example 1). Denote by J (i )

pauli a
Choi matrix of Pauli channel on qubit i . By directly evaluating the action of that
channel on operators of the form |k 〉〈l | (recall the definition of Choi matrix) we
explicitly write down matrix representation of J (i )

pauli and calculate

4 tr
(
J

(i )

pauli

)2
= tr

(
Λ
(i )

pauli( |0〉〈0|)
)2

+ tr
(
Λ
(i )

pauli( |1〉〈1|)
)2
+ (3.153)

+ 2 tr

(
Λ
(i )

pauli ( |0〉〈1|)
(
Λ
(i )

pauli ( |0〉〈1|)
)†)

(3.154)

From direct evaluation, we get that

tr
(
Λ
(i )

pauli( |k 〉〈k |)
)2

= (p1 + pzi )
2 + (pxi + pyi )

2 (3.155)

and

tr

(
Λ
(i )

pauli( |k 〉〈l |)
(
Λ
(i )

pauli( |k 〉〈l |)
)†)

= (p1 − pzi )
2 + (pxi − pyi )

2 (3.156)

for k , l . Summing up everythingwe get that cross-terms cancel and | |J (i )

pauli | |
2

H S
=Í

j p
(i )

j
= | |p(i) | |2

2
which combined with Lemma 25 yields Eq. (3.151).

To get Eq. (3.152) we follow an identical strategy as for Example 16. Namely,
we recall the fact that for any states ρ and ρ̃, the HS distance can be written as
| |ρ − ρ̃ | |2

H S
= tr ρ2 + tr ρ̃2 − 2 tr (ρ ρ̃). Now in our case ρ = JΛpauli and ρ̃ = JI .

The Choi of the identity channel is a maximally-entangled state, its purity is thus
equal to 1, while the purity of the Choi of the noisy channel was already calcu-
lated above. To evaluate cross-term, we note that it factorizes into a product of
single-qubit terms (as for purity, it follows from the permutational equivalence
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between the Choi matrix of product channel and tensor product of Choi matri-
ces), each of them being equal to

tr
(
J

(i )

pauliJ
(i )

I

)
=

1

4

Õ
k ,l ∈{0,1}

tr (Λ ( |k 〉〈l |) |l 〉〈k |) . (3.157)

This evaluates to

tr
(
Λ
(i )

pauli ( |k 〉〈k |) |k 〉〈k |
)
= p

(i )

1
+ p

(i )
zi , (3.158)

and

tr
(
Λ
(i )

pauli ( |k 〉〈l |) |k 〉〈l |
)
= p

(i )

1
− p

(i )
zi , (3.159)

for k , l . Summing up we obtain tr
(
J

(i )

pauliJI

)
= p

(i )

1
. Combining all of the above

with the definition of average-case distance yields Eq. (3.152). �

3.7.3 Proof of claims in Examples 1, 2, 3, and 4

Now we are ready to prove Examples 1, 2, 3, and 4 from Section 3.5.

Uncorrelated Pauli noise and symmetric measurement noise

Recall that in Examples 1 and 4 we consider product Pauli channels. Specifi-
cally, we have a Pauli channel Λpauli = ⊗N

i=1
Λ
pauli
i
, where single-qubit channel is

Λ
pauli
i

(ρ) =
Í

j=1 p
(i )

j
σj ρσj with j ∈ {1, x , y , z }, σ1 = É, and p (i )

j
≥ 0,

Í
j p

(i )

j
= 1.

It is useful to define q (i )
= p

(i )

1
+ p

(i )
ri , i.e., a probability of applying on qubit i a

gate that stabilizes the state of that qubit (namely, either identity or Pauli matrix
of which |±ri 〉 is an eigenstate). Moreover, we will consider average properties
of noise as q av

=
1

N

ÍN
i=1 q

(i ) and f av
=

1

N

ÍN
i=1 q

(i ) (1 − q (i )). In Example 2, we
consider a stochastic measurement noise that is uncorrelated, and symmetric.
Due to that last property, it can be modeled as a probabilistic application of Pauli
X gate, i.e., a special type of Pauli channel. Therefore, Examples 1, 2, and 4 all
consider the same type of noise, which we analyze now.
In what follows, we will derive an upper bound for Eq. (3.120) and a lower

bound for Eq. (3.121), which correspond to inequalities Eq. (3.48) and Eq. (3.49)
from Example 1, respectively.
To begin, we consider a function f (i )

= q (i ) (1−q (i )), as well as average noise
properties q av

=
1

N

ÍN
i=1 q

(i ) and f av
=

1

N

ÍN
i=1 f

(i ) . We then bound Eq. (3.120)
from above as r

ΠN
i=1

(
1 − 2f (i )

)
− 1

d
≤

q
ΠN
i=1

(
1 − 2f (i )

)
, (3.160)
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and continue with bounding the (positive) expression inside square root as

ΠN
i=1

(
1 − 2f (i )

)
=

(
N

q
ΠN
i=1

(
1 − 2f (i )

)
)N

≤
 ÍN

i=1(1 − 2f (i ))

N

!N
= (3.161)

= (1 − 2f av )
N ≤ exp(−2f avN ) , (3.162)

where in first inequality we used inequality between geometric and arithmetic
means together with a fact that xN ≥ yN for x > y > 0. In second inequality we
used that for 0 ≤ x ≤ 1 and N ≥ 1, we have (1 − x )N ≤ exp (−xN ). Note that
each term 2f (i ) lies in interval 2f (i ) ∈

[
0,

1

2

]
. Combining everything we obtain

dsav(Λ
pauli(ψpauli),

É

d
) ≤ 1

2
exp(−f avN ) , (3.163)

which concludes the proof of first bound.
To bound Eq. (3.121) from below, we start by again employing inequality

between geometric and arithmetic mean, namely

1 − 2ΠN
i=1q

(i )
= 1 − 2

(
N

q
ΠN
i=1

q (i )

)N
≥ 1 − 2

(Í
i=1 q

(i )

N

)N
= 1 − 2 (q av )

N
,

(3.164)

which after combining with Eq. (3.121) yields

dsav(Λ
pauli(ψpauli),ψpauli) ≥ 1

2

q
1 − 2 (q av )N + ΠN

i=1
(1 − 2q (i ) (1 − q (i ))) ≥

(3.165)

≥ 1

2

q
1 − 2 (q av )N . (3.166)

The above bound is valid provided that argument is still contained in the domain
of square root, i.e., we need to impose

1 − 2 (q av )
N ≥ 0 =⇒ q av ≤ N

r
1

2
. (3.167)

Note that N

q
1

2

N→∞−−−−−→ 1, and since q av is by definition lower than 1, the bound

becomes less restrictive for higher system sizes. For small systems it is valid
only for high noise (small q av ), but in such cases one can simply use the exact
expressions from Eqs. (3.120) and (3.121).
The exactly same reasoning is applied for Examples 2 and 4, for which all

expressions have almost the same functional forms (see Examples 17 and 21).
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Generic uncorrelated measurement noise

Finally, recall that in Example 3, we consider a more general measurement noise
applied to computational basis measurement P = (|x〉〈x|)x∈{0,1}N on N qubit sys-
tem. We denote M = (Mx)x∈{0,1}N to be a POVM specified by effects Mx =

Λ
†
1
( |x1〉〈x1 |) ⊗ . . . ⊗ Λ

†
N
( |xN 〉〈xN |), where Λi are quantum channels affecting

i ’th qubit, and Λ†
i
is the conjugate of Λi . We define classical success prob-

ability as p (i ) (xi |xi ) = tr
(
Λ
†
i
( |xi 〉〈xi |) |xi 〉〈xi |

)
, the corresponding average as

q
(i )
av =

p i (0|0)+p (i ) (1|1)
2

, and average over qubits q av
B

1

N

ÍN
i=1 q

(i )
av . Since thismodel

is more general than Pauli noise, it requires separate treatment.
We will now derive the lower bound on the distance between the above-

described noisy measurement and computational basis measurement, that is the
inequality statement in Eq. (3.51) from Example 3. The first part of the proof is
now slightly more involved due to more general noise model considered, and its
goal is to reduce the noise form to a stochastic, symmetric measurement noise
model that we considered above. To prove the claim, first one applies maximally-
dephasing channel to both measurements and uses data-processing inequality
for average-case distance to bound the distance from below by the diagonal
part of the POVMM. Specifically, define dephased POVMΦdep(M) via its effects
Φdep(M)i = Φdep(Mi ), where maximally dephasing channel acts on any operator
A as Φdep(A) = diag(A), with diag(A) denoting diagonal part of A. Note that for
compuational basis measurement P we have Φdep(P) = P. Thus we have

dmav(Φdep(M),Φdep(P)) ≥ dmav(Φdep(M),P) . (3.168)

The above allows to treat noise as classical and look only on assignment in-
fidelities for classical states (i.e., error probabilites when measured states are
computational-basis states). Note that, importantly, maximally dephasing chan-
nel does not change the product structure ofM. Thus we can treat this dephased
POVMΦdep(M) as related to computational basis measurement via some tensor

product of stochastic maps T =
ËN

i=1 T
(i ) , where T(i ) acts on i th qubit and is

specified by two success probabilities p (i ) (0|0) and p (i ) (1|1) (see, for example,
Ref. [42] and Chapter 4 for more details on stochastic readout noise). Thus we
have

dmav(M,P) ≥ dmav(TP,P) , (3.169)

where TP is a POVM with i th effect given by (TP)i =
Í

i Ti j |j 〉〈j | and stochastic
map T is defined via diagonal elements of original POVM M (as in discussion
above).
Now one applies Lemma 28 that lower bounds the distance via symmetrized

version of T, where now both error probabilities are the same and equal to q (i )
av =

p (i ) (0|0)+p (i ) (1|1)
2

(note that this is equivalent to Pauli bitflip channel applied with

probability q (i )
av ). Denote such symmetrized version of T as T

sym. This gives

dmav(TP,P) ≥ dmav(TsymP,P). (3.170)



3.8. Summary 68

Therefore we reduced the lower bound to scenario considered in Example 2, for
which the bound was proved above in the previous subsection.

3.8 Summary

In this Chapter, we introduced and analyzed a novel approach to measuring sim-
ilarity between quantum objects (states, measurements, and channels) based
on their average-case statistical distinguishability through random quantum cir-
cuits. Unlike conventional distance measures such as trace distance or diamond
norm that focus on optimal distinguishability protocols, our average-case quan-
tum distances capture the typical behavior of quantum objects in experiments
involving low-depth quantum circuits – approximate unitary 4-design that can
be implemented in depth log (N ) (N being number of qubits).
The core theoretical contribution is proving that for circuits forming approxi-

mate 4−designs, the average Total Variation Distance between output statistics
can be approximated by simple explicit functions expressible as degree-2 poly-
nomials in the underlying quantum objects. These functions, which we denoted
as average-case (AC) distances, possess several desirable properties includ-
ing subadditivity with respect to tensor products, joint convexity, and restricted
data-processing inequalities. Notably, all distances include terms utilizing the
Hilbert-Schmidt norm, providing this norm with a new operational interpreta-
tion. We also established bounds on the relationship between worst-case and
average-case distances, showing that their ratio is at most d 1/2, d , and d 3/2 for
quantum states, measurements, and channels, respectively. Through explicit
examples, we demonstrated that these bounds are tight.
Our results have potentially significant practical implications for analysis of

quantum computing protocols. The average-case distances provide amore real-
istic assessment of device performance than worst-case measures, particularly
for near-term applications where circuits will typically be of moderate depth. In
particular, we have demonstrated that our tools can be used to study average-
case convergence (resp. divergence) of noisy distributions to uniform, useless
distribution (resp. from ideal, noiseless distribution). This provides a new way to
study effects of noise on quantum computing experiments.
Importantly, AC distances demonstrate that, in principle, an efficient discrimi-

nation of high-dimensional quantumobjects is possiblewith low-depth quantum
circuits if one allows for classical randomness (however, this is, in general, at the
cost of exponential classical processing requirements). Moreover, we have dis-
cussed consequences of our findings to certain complexity measures of pure
quantum states and unitary channels.
We supplemented our findings with numerical simulations that further vali-

dated that AC distances might be better suited for quantifying the quality of noisy
quantum computing protocols (such as variational optimization), as compared to
standard worst-case measures.



4. Modeling and mitigation of correlated readout noise

4.1 Chapter overview

4.1.1 Summary in the context of the thesis

One of the main impediments in the execution of measurements on quantum
computing apparatus is the pervasive influence of noise. In this chapter, we
introduce a scalable method of characterizing correlated measurement noise
based on so-called quantum overlapping tomography – we call the method Di-
agonal Detector Overlapping Tomography (DDOT). In conjunction with DDOT,
we present classical post-processing methods designed to reduce the effects
of noise in the task of, among others, estimating local quantum observables. We
test our methods in experiments on superconducting quantum devices devel-
oped by IBM and Rigetti.
The chapter is based onwork [3] which the author of this Thesis co-authored.

It contains large excerpts from that publication, with edits necessary to adjust
them for the format of a Ph.D. thesis.

4.1.2 Technical abstract

Measurement noise is one of the main sources of errors in currently available
quantum devices based on superconducting qubits. At the same time, the com-
plexity of its characterization and mitigation often exhibits exponential scaling
with the system size. In this work, we introduce a correlated measurement noise
model that can be efficiently described and characterized, and which admits ef-
fective noise-mitigation on the level of marginal probability distributions. Noise
mitigation can be performed up to some error for which we derive upper bounds.
Characterization of the model is done efficiently using Diagonal Detector Over-
lapping Tomography – a generalization of the recently introducedQuantumOver-
lapping Tomography to the problem of reconstruction of readout noise with re-
stricted locality. The procedure allows to characterize k-local measurement
cross-talk on N-qubit device using O

(
k 2k log (N )

)
circuits containing random

combinations of X and identity gates. We perform experiments on 15 (23) qubits
using IBM’s (Rigetti’s) devices to test both the noisemodel and the error-mitigation
scheme, and obtain an average reduction of errors by a factor > 22 (> 5.5) com-
pared to nomitigation. Interestingly, we find that correlations in themeasurement

69
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noise do not correspond to the physical layout of the device. Furthermore, we
study numerically the effects of readout noise on the performance of the Quan-
tum Approximate Optimization Algorithm (QAOA). We observe in simulations that
for numerous objective Hamiltonians, including random MAX-2-SAT instances
and the Sherrington-Kirkpatrick model, the noise-mitigation improves the qual-
ity of the optimization. Finally, we provide arguments why in the course of QAOA
optimization the estimates of the local energy (or cost) terms often behave like
uncorrelated variables, which greatly reduces sampling complexity of the energy
estimation compared to the pessimistic error analysis. We also show that similar
effects are expected for Haar-random quantum states and states generated by
shallow-depth random circuits.

4.2 Introduction

4.2.1 Motivation

Outstanding progress has been made in the last years on the path to develop-
ment of scalable and fully functional quantum devices. With state of the art
quantum processors reaching a scale of 50-100 qubits [125], the scientific
community is approaching a regime in which quantum systems cannot be mod-
eled on modern supercomputers using known methods [126]. This situation
is unarguably exciting since it opens possibilities for the first demonstrations of
quantum advantage and, potentially, useful applications [127; 128; 129]. At
the same time, however, it entails a plethora of non-trivial problems related to
fighting effects of experimental imperfections on the performance of quantum
algorithms. As quantum devices in the near-term will be unable to implement
proper error correction [129], various methods of noise mitigation have been
recently developed [130; 131; 132; 133; 134; 135; 136; 42; 41; 120]. Those
methods aim at reducing the effects of errors present in quantum gates and/or in
quantum measurements. In this work, we focus on the latter, i.e., noise affecting
quantum detectors.
Indeed, it has been found in currently available quantum devices that the

noise affecting measurements is quite significant. Specifically, errors of the
order of a few percent in a single qubit measurement and non-negligible ef-
fects of cross-talk were reported [125; 42; 41; 120; 119]. Motivated by this,
a number of methods to characterize and/or reduce measurement errors were
proposed [42; 41; 119; 120; 137; 138; 139; 140; 141; 142; 143]. Readout
noise mitigation usually relies on the classical post-processing of experimen-
tal statistics, preceded by some procedure of noise characterization. Existing
techniques typically suffer from the curse of dimensionality due to characteriza-
tion cost, sampling complexity, and the complexity of post-processing – which
scale exponentially with the number of qubits N . Fortunately, some interest-
ing problems in quantum computing do not require measurements to be per-
formed across the whole system. An important class of algorithms that have this
feature are the Quantum Approximate Optimization Algorithms (QAOA) [144],
which only require the estimation of a number of few-particle marginals. QAOA
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is a heuristic, hybrid quantum-classical optimization technique [144; 145], that
was later generalized as a standalone ansatz [146] shown to be computationally
universal [147; 148]. In its original form, QAOA aims at finding approximate solu-
tions for hard combinatorial problems, notable examples of which are maximum
satisfiability (SAT) [109], maximum cut (MAXCUT) [149], or the Sherrington-
Kirkpatrick (SK) spin-glass model [150; 58]. Regardless of the underlying prob-
lem, the main QAOA subroutine is the estimation of the energy of the local classi-
cal Hamiltonians on a quantum state generated by the device. Those Hamiltoni-
ans are composed of a number of a few-body commuting operators, and hence
estimation of energy can be done via estimation of the local terms (which can be
performed simultaneously). Since the estimation of marginal distributions is the
task of low sampling and post-processing complexity, this suggests that error
mitigation techniques can be efficiently applied in QAOA. In this work, we present
a number of contributions justifying the usage of measurement error-mitigation
in QAOA, even in the presence of significant cross-talk effects.

4.2.2 Summary of results

Our first contribution is to provide an efficiently describable measurement noise
model that incorporates asymmetric errors and cross-talk effects. Importantly,
our noise model admits efficient error-mitigation on the marginal probability dis-
tributions, which can be used, e.g., for improvement of the performance of vari-
ational quantum algorithms. We show how to efficiently characterize the noise
using a number of circuits scaling logarithmically with the number of qubits. To
this aim, we generalize the techniques of the recently introduced Quantum Over-
lapping Tomography (QOT) [151] to the problem of readout noise reconstruction.
Specifically, we introduce notion of Diagonal Detector Overlapping Tomography
(DDOT) which allows to reconstruct noise description with k-local cross-talk
on N-qubit device using O

(
k 2k log (N )

)
quantum circuits consisting of single

layer of X and identity gates. Furthermore, we explain how to use that charac-
terization to mitigate noise on the marginal distributions and provide a bound for
the accuracy of the mitigation. Importantly, assuming that cross-talk in readout
noise is of bounded locality, the sampling complexity of error-mitigation is not
significantly higher than that of the starting problem of marginals estimation.
We test our error-mitigation method in experiments on 15 qubits using IBM’s

device and on 23 qubits using Rigetti’s device, both architectures based on su-
perconducting transmon qubits [152]. We obtain a significant advantage by us-
ing a correlated error model for error mitigation in the task of ground state en-
ergy estimation. Interestingly, the locality structure of the reconstructed errors
in these devices does not match the spatial locality of qubits in these systems.
We also study statistical errors that appear in the simultaneous estimation of

multiple local Hamiltonian terms that appear frequently in QAOAs. In particular,
we provide arguments why one can expect that the estimated energies of lo-
cal terms behave effectively behave as uncorrelated variables, for the quantum
states appearing at the beginning and near the end of the QAOA algorithm. This
allows to prove significant reductions in sampling complexity of the total energy
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estimation (compared to the worst-case upper bounds).
Finally, we present a numerical study and detailed discussion of the possible

effects that measurement noise can have on the performance of the Quantum
Approximate Optimization Algorithm. This includes the study of how noise dis-
torts the quantum-classical optimization in QAOAs. We simulate the QAOA pro-
tocol on an 8-qubit system affected by correlated measurement noise inspired
by the results of IBM’s device characterization. For a number of random Hamil-
tonians, we conclude that the error-mitigation highly improves the accuracy of
energy estimates, and can help the optimizer to converge faster than when no
error-mitigation is used.

4.2.3 Related works

The effects of simple, uncorrelated noisy quantum channels onQAOAswere ana-
lyzed in Refs. [153; 154; 155]. In particular, the symmetric bitflip noise analyzed
in [153] can be used also to model symmetric, uncorrelated measurement noise
- a type of readout noise which has been demonstrated to be not very accurate in
currently available devices based on transmon qubits [42; 119]. A simple read-
out noise-mitigation technique on the level of marginals for QAOAs was recently
experimentally implemented on up to 23 qubits in a work by Google AI Quan-
tum team and collaborators [21]. Importantly, the authors assumed uncorrelated
noise on each qubit – we believe that our approach which accounts for correla-
tions could prove beneficial in those kinds of experiments. In a similar context,
readout noise-mitigation using classical post-processing on global probability
distributions was implemented in QAOA and Variational Quantum Eigensolver
(VQE) experiments on up to 6 qubits [156; 157]. While for such small system
sizes it is possible to efficiently perform global error mitigation, we emphasize
that our approach based on the noise-mitigation on the marginals could be per-
formed also in larger experiments of this type.
Alternativemethods of characterization of correlatedmeasurement noisewere

recently proposed in Refs. [119; 140; 120]. Out of the above-mentioned works,
perhaps themost related to ours in terms of studied problems is Ref. [120], there-
fore we will now comment on it thoroughly. The authors introduced a correlated
readout noisemodel based onContinuous TimeMarkov Processes (CTMP). They
provide both error-characterization and error-mitigation methods. The CTMP
noise model assumes that the noisy stochastic process in a measurement de-
vice can described by a set of two-qubit generators with corresponding error
rate parameters. The total number of parameters required to describe a generic
form of such noise for N-qubit device is 2N 2. The authors propose a method of
noise characterization that requires preparation of a set of suitably chosen classi-
cal states and performing a post-selection on the noise-free outcomes (i.e., cor-
rect outcomes given known input classical state) on the subset of (N − 2) qubits.
Since probability of noise-free outcomes can be exponentially small even for
the uncorrelated readout noise, this method can prove relatively costly in prac-
tice. We believe that our DDOT characterization technique could prove useful in
reducing the number of parameters needed to describe CTMP model (by show-



4.2. Introduction 73

ing which pairs of qubits are correlated, and for which the cross-talk can be
neglected), hence allowing for much more efficient version of noise reconstruc-
tion presented in Ref. [120]. The authors also present a novel noise-mitigation
method that allows to estimate the noise-reduced expected values of observ-
ables. The method is based on decomposition of inverse noise matrix into the
linear combination of stochastic matrices, and constructing a random variable
(with the aid of classical randomness and post-processing) that agrees in the
expected value of noise-free observable. In general, both sampling complex-
ity and classical post-processing cost scale exponentially with the number of
qubits. Since the authors aim to correct observables with arbitrary locality, the
problem they consider is different to our approach that aims to correct only local
observables (and therefore does not exhibit exponential scalings). It is an inter-
esting problem to see whether the CTMP noise model can also be interpreted on
the level of marginal probability distributions in a way that allows for mitigation
analogous to ours in terms of complexity.
Another related method was developed in Ref. [122] (see also [123; 124]),

where the authors propose to use random implementation of X gates, together
with a simple classical post-processing, to symmetrize (or “twirl”) a generic
stochastic measurement noise (we note that we used similar twirling trick to
prove Lemma 28 in Chapter 3). Intuitively, the twirling procedure makes the
error probabilities independent on the corresponding ideal measurement out-
come (i.e., all columns of the noise matrix T become identical up to permutation
of their elements). For example, in the case of single-qubit stochastic map with
error probabilities p (0|1) and p (1|0), the twirling procedure transforms the effec-
tive noise model to symmetric stochastic map described by a single parameter
p (0|1)+p (1|0)

2
(recall Lemma 28 and Example 17). When estimating expected val-

ues of Pauli Z operators, such a symmetric measurement noise results in rescal-
ing of the expected values. Ref. [122] then proposes to estimate the rescaling
factors by implementation of random circuits, and using them as a noise miti-
gation technique for expected values (by simply dividing the estimators by cor-
responding factors). This simplification of the noise model comes at a cost of
randomized implementation of the twirling gates for every experiment (not only
for calibration) and an increase in sample complexity (similarly to most quan-
tum error mitigation techniques [34]). We note that the DDOT characterization
technique that we introduce in Section 4.4 could be used to estimate the above-
mentioned noise rescaling factors. Moreover, the measurement noise models
we consider in this Chapter (see Section 4.3) could, in principle, benefit from
such twirling (in a sense of reducing the number of parameters needed to de-
scribe a given model). Making connections between our techniques and similar
randomized readout error-mitigation/characterization methods [122; 123; 124]
remains an interesting future research direction.

4.2.4 Structure of the chapter

In Section 4.3 we discuss correlations in classical readout noise and introduce
a "clusters and neighbors" model that we propose to effectively model them.
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In Section 4.4, we introduce the Diagonal Detector Overlapping Tomography
(DDOT), a method to efficiently characterize local readout noise using certain
collections of very simple quantum circuits. The section includes experimental
results of noise characterization performed on IBM’s and Rigetti’s quantum de-
vices. In Section 4.5, we describe how the results of DDOT can be used for
efficient (approximate) noise mitigation on the level of marginal probability dis-
tributions. This allows to reduce effects of readout noise, for example, on the
protocols that involve the estimation of energy of local Hamiltonians. In Sec-
tion 4.6, we experimentally benchmark the proposed noise mitigation strategy
on various classes of such Hamiltonians in IBM’s and Rigetti’s quantum devices.
Then, in Section 4.7, we focus our attention on Quantum Approximation Opti-
mization Algorithm (QAOA) protocol, and investigate how different approxima-
tions necessary for our noise-mitigation technique contribute to the errors in the
final energy estimates. The section is followed by Section 4.8, where we present
extensive numerical studies on how the correlated measurement noise affects
QAOA optimization. Finally, in Section 4.9, we summarize our findings.

4.3 Correlated readout noise model

4.3.1 Preliminaries

Recall from Section 2.3.2 that, to a good approximation, measurement noise can
be modeled by a stochastic map T. Due to the linearity of Born’s rule, it fol-
lows that probabilities pnoisy fromwhich noisy detector samples are related to the
noiseless probabilities pideal via the same stochastic map (recall Equation (2.3))

pnoisy = Tpideal . (4.1)

Then the noise can by reversed by first estimating LHS, and then multiplying it by
T−1. Note that while this method is perhaps themost natural (and simple) method
to reduce the noise and has been shown to be useful in practical situations [41;
42], there exist more sophisticated techniques of noise-mitigation that do not
exhibit this problem. For example, Iterative Bayesian Unfolding [138] always
returns physical probability vectors.

4.3.2 Correlations in readout noise

The size of the matrix T scales exponentially with the number of qubits. Thus, if
one wants to estimate such a generic T using standard methods, both the num-
ber of circuits and sampling complexity scale exponentially. Indeed, the standard
method of reconstructing T is to create all the 2N computational basis and esti-
mate the resulting probability distributions (which constitute the columns of T).
We refer to such characterization as Diagonal Detector Tomography (DDT), since
it probes the diagonal elements of themeasurement operators describing the de-
tector. This is restricted version of more general Quantum Detector Tomography
(QDT) [80; 158; 159; 160].
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These complexity issues can be circumvented if one assumes some locality
structure in the measurement errors. For example, in the simplest model with
completely uncorrelated readout noise, the T matrix is a simple tensor product
of single-qubit error matrices TQ i

T =
Ì
i

TQ i
(uncorrelated noise). (4.2)

In this model, we need to estimate only single-qubit matrices, which renders the
complexity of the problem to be linear in the number of qubits. However, for con-
temporary quantum devices based on superconducting qubits, it was demon-
strated that such a noise model is not very accurate due to the cross-talk effects
[125; 42; 41; 119]. At the same time, the completely correlated noise is not
realistic as well, which motivates the search for a model that can account for
correlations in readout errors while still giving an efficient description of T.
In this work, we propose such a model and give a method to characterize it.

Let us lay out the basic concepts of our model. Consider the correlated errors
between some group of qubits Cχ . The most general way of describing those
errors is to treat the qubits in Cχ as a single object, i.e., to always consider their
measurement outcomes together. In terms of the noise matrix description, this
means that the noise matrix on Cχ is some generic TCχ acting on Cχ . This gives
rise to the first basic object in our model – the clusters of qubits. The cluster
Cχ is a group of qubits with correlations between them so strong, that one can
not consider outcomes of their measurements separately. At the same time, it
is unlikely that in actual devices the correlations between all the qubits will be
so strong that one should assign them all to a single cluster. This motivates the
introduction of another, milder possibility. Consider a measurement performed
on qubits in cluster Cχ and some other qubits Nχ (not being in that cluster). It is
conceivable to imagine some complicated physical process, which results in the
situation in which the noise matrix TCχ on cluster Cχ slightly depends on the state
of the qubits in Nχ . To account for that, we introduce the second basic object of
our model – the neighborhood of the cluster. The neighborhood Nχ of a cluster
Cχ is a group of qubits the state of which just before the measurement affects
slightly the noise matrix acting on the cluster Cχ .
For example, if Cχ contains only a single qubit, say Q0, it is possible that due

to some effective ferromagnetic-type interaction, the probability of erroneously
detecting state “0” of Q0 as “1” rises when the neighboring qubit Q1 is in state
“1” (compared to when it is in state ′

0
′).

A notion related to our “neighborhood” has appeared in recent literature. Specif-
ically in the context of measurement error characterization, ’spectator qubits’ are
the qubits that affect measurement noise on other qubits [119; 140]. However,
so far this effect was treated rather as an undesired complication, while here it
is an inherent element of the proposed noise model.
Now we are ready to provide an efficient noise model. We construct a global
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(a) (b)

Figure 4.1: Exemplary correlations in the measurement noise that can be captured by
our model. Each circle represents a qubit. Subfigure a) represents a 9-qubit device with
some cluster Cχ (orange envelope) consisting of two qubits. The noise on the qubits
from that cluster is dependent on the state of qubits from its neighborhood Nχ (magenta
envelope). Note that the “neighborhood” does not have to correspond to spatial ar-
rangement of qubits in the device. Subfigure b) shows a more detailed example of a
four-qubit device. Qubits Q0 and Q1 are in one cluster, which is indicated by coloring
them with the same color. Qubits Q2 and Q3 are white, meaning they do not belong to
any cluster. Qubits at the beginning of the arrow are the neighbors of the qubits at the
end of the arrow. Explicitly, the clusters in the example are C1 = {0, 1} , C2 = {2} , and
C3 = {3}, while their neighborhoods are N1 = {3} , N2 = {3}, and N3 = {1}. Correla-
tions in the readout errors for qubits Q0 and Q1 can be arbitrary, while for the rest of the
qubits the dependencies are restricted by the structure of clusters and the neighbors.
In particular, the noise matrix on Q3 depends on the state of Q1, while the state of Q3

affects the noise on qubitsQ0 andQ2. At the same time, qubit 2 does not affect the noise
matrix on any other qubit. See the description in the main text.

noise matrix T with matrix elements of the following form

TX1...XN |Y1...YN
=

Ö
χ

T
YNχ
XCχ |YCχ

. (4.3)

In the next subsection we give some illustrative examples, but first let us thor-
oughly describe the notation used in the above equation. A collection

{
Cχ

}
χ

gives us the partitioning of the set of all qubits. Explicitly, Cχ ∩ Cχ ′ = ∅ if χ , χ ′

and ∪χCχ = [N ], where N is the number of qubits. To each cluster Cχ the model
associate its neighborhood Nχ . Equation (4.3) can be now understood in the fol-
lowing way. The noise matrix TYNχ describing the measurement noise occurring
in cluster Cχ depends on the state just before measurement of the qubits in the
neighborhood Nχ of that cluster (hence the superscript YNχ denoting that state).

Importantly, each TYNχ is left-stochastic for any state of the neighbors. By XCχ
(or YCχ ) we denote bit-strings of qubits belonging to cluster Cχ which were mea-
sured (or put inside the device just before measurement). Finally, YNχ indicates
the bit-string denoting the state just before the measurement of the qubits from
the neighborhood Nχ of the cluster Cχ (see Fig. 4.1a for illustration). Note that



4.3. Correlated readout noise model 77

in general the correlations in measurement errors (expressed by the structure
of the clusters and neighborhoods) do not need to be directly correlated with
the physical layout of the device. In general T in Eq.(4.3) is specified by only
≈ Í

χ (4
|Cχ |)2|Nχ | parameters, where |Cχ | and |Nχ | are sizes of χ ’th cluster and

its neighbourhood respectively. Therefore this description is efficient provided
sizes of the clusters and their neighborhoods are bounded by a constant.

4.3.3 Illustrative examples

In what follows present examples of readout correlation structures that can be
described with our model. It is instructive to start with a simple example of a
hypothetical four-qubit device depicted in Fig. 4.1b. Note that in this example
we have only one non-trivial (i.e., with size ≥ 2) cluster. Let us write explicitly
the matrix elements of the global noise matrix acting on that exemplary 4-qubit
device

TX0X1X2X3 |Y0Y1Y2Y3
= TY3

X0X1 |Y0Y1

TY3

X2 |Y2

TY1

X3 |Y3

. (4.4)

Note that on the RHS of Eq. (4.4), the superscriptY3 appears two times, indicat-
ing that noise matrices on the cluster C1 and on the cluster C2 both depend on
the state just before measurement of the qubit 3. At the same time, there is no su-
perscriptY2, which follows from the fact that qubit 2 does not affect the noise on
any other qubits. Note that while a generic noise matrix on 4 qubits would require
reconstruction of 16× 16 matrix, here we need a number of smaller dimensional
matrices to fully describe the noise.
We now move to a more general readout error model, which is particularly in-

spired by current superconducting qubits implementations of quantum comput-
ing devices. Consider a collection of qubits arranged on a device with a limited
connectivity. This can be schematically represented as a graph G(V , E ), where
each vertex inV represents a qubit and each edge in E connects two qubits that
can interact in the device. In such a scenario, a natural first step beyond an un-
correlated readout noise model can be a nearest-neighbour correlated model,
where readout errors on each qubit are assumed to be influenced at most by the
state of the neighbouring ones. By using the notation introduced in the previous
section, we can represent such a model by associating a single-qubit cluster to
each vertex, Ci = {i }, for i ∈ V , and defining the neighbourhoods according to
the graph structure, namely Ni = {j | (i , j ) ∈ E }. The global noise matrix then
reads

TX1...X |V | |Y1...Y|V |
=

Ö
i ∈V
T
YNi
Xi |Yi
. (4.5)

If we specialise this to the case of a 2D rectangular lattice of size L, the neigh-
bourhood of generic (i.e. not belonging to the boundary) vertex becomes Ni =

{i + 1, i − 1, i + L, i − L}. It follows that each T
YNi
Xi |Yi
can be represented by a col-

lection of 24 = 16 matrices of size 2 × 2, which is an exponential improvement
with respect to a general 2L

2

× 2
L2

.
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Although the above correlated noise model seems a very natural one, we will
see in the following Section that it does not encompass all the correlated readout
errors in current superconducting devices, for which it will be more convenient
to resort to models (4.3) with more general cluster and neighborhood structures
that do not necessarily correspond to the physical layout of the devices.

4.4 Efficient characterization of readout noise

Here we outline a strategy to determine a noise matrix in the form (4.3) which
closely represents the readout noise of a given device. We proceed in two steps:
at first we infer the structure of clusters ({Cχ } and neighbourhoods ({Nχ } by
making use of Diagonal Detector Tomography (DDT); then we proceed to exper-

imentally determine noise matrices {T
YNχ
XCχ |YCχ

}

For the first step, we propose to reconstruct all two-qubit noise matrices (av-
eraged over all other qubits) by means of DDT and calculate the following quan-
tities

cj→i =
1

2
| |T

Yj=
′
0
′

Q i
− TYj=

′
1
′

Q i
| |1→1 (4.6)

where | |A | |1→1 B sup| |v | |1=1 | |Av | |1 = maxj
Í

i |Ai j |. The above quantity has an
operational interpretation in terms of Total-Variation Distance (TVD). Recall from
Section 2.4 that this distance quantifies statistical distinguishability of probability
distributions p and q and can be defined by (Eq. (2.7))

TVD (p, q) =
1

2
| |p − q| |1 =

1

2

Õ
i

|pi − qi | . (4.7)

We can give the following, intuitive interpretation of the quantity from Eq. (4.6):
cj→i represents themaximal TVD for which the output probability distributions on
qubitQ i differs due to the impact of the state of the qubitQ j on the readout noise
on Q i . Note that in general cj→i , ci→j , which encapsulates the asymmetry in
the correlations which is built into our noise model.
We propose to use the values of cj→i to decide whether the qubits should

belong to the same clusters, to the neighborhoods, or should be considered
uncorrelated (a simple, intuitive algorithm for this procedure is presented in Ap-
pendix B.2.2, Algorithm 3 – in the future, we intend to extend those methods).

After doing so, the noise matrices {T
YNχ
XCχ |YCχ

} can be reconstructed by means of

joint DDT over the sets of qubits {Cχ ∪Nχ }χ .
In the above construction we assumed that the joint size of a cluster and its

neighborhood is at most k . This makes it so that one has to gather DDT data on
subsystems of fixed size, implying a number of different circuits that scales at
most as O (N k ). However, for any characterization procedure, it is expedient to
utilize as few resources as possible. In order to reduce the number of circuits
even further, in the next Section we generalize the recently introduced Quantum
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Overlapping Tomography (QOT) [151] (see also recent followups [161; 162])
to the context of Diagonal Detector Tomography. We will refer to our method as
Diagonal Detector Overlapping Tomography (DDOT).

4.4.1 Diagonal Detector Overlapping Tomography

QuantumOverlapping Tomography is a technique that was introduced for a prob-
lem of efficient estimation of all k-particle marginal quantum states. The main
result of Ref. [151] was to use the concept of hashing functions [163; 164; 165;
166] to reduce the number of circuits needed to reconstruct all k-qubit marginal
states. Specifically, it was shown there that O

(
log (N ) k ek

)
circuits suffice for

this purpose. Here we propose to use an analogous technique to estimate all
noise matrices corresponding to k-particle subsets of qubits. Specifically, we
propose to construct a collection of circuits consisting of certain combinations
of É and X gates in order to initialize qubits in states |0〉 or |1〉. With fixed k , the
collection of quantum circuits for DDOT must have the following property – for
each subset of qubits of size k , all of the computational-basis states on that
subset must appear at least once in the whole collection of circuits. Intuitively, if
a collection has this property, then the implementation of all circuits in the col-
lection allows us to perform tomographic reconstruction (via standard DDT) of
noise matrices on all k-qubit subsets. One can think about DDOT as a method of
parallelizing multiple local DDTs in order to minimize number of circuits needed
to obtain description of all local k-qubit noise processes. In Appendix B.2.4 we
show that it suffices to implement O

(
k 2k log (N )

)
quantum circuits consisting

of random combinations of X and identity gates in order to construct a DDOT cir-
cuits collection that allows to capture all k-qubit correlations in readout errors
(see Algorithm 1 and Algorithm 2). It is an exponential improvement over stan-
dard technique of performing local DDTs separately (which, as mentioned above,
requires O

(
N k

)
circuits). For example, if one chooses k = 5 for N = 15-qubit

device, the naive estimation of all 5-qubit marginals would require the implemen-
tation of 25

(
15

5

)
≈ 10

5 quantum circuits, while DDOT allows doing so using ≈ 350

circuits. We note that this efficiency, however, comes with a price. Namely, since
different circuits are sampledwith different frequencies, some false-positive cor-
relations might appear. This may cause some correlations in the reconstructed
noise model to be overestimated (see Appendix B.2.6 for a detailed explanation
of this effect). This effect can be mitigated either by certain post-processing of
experimental results (see Appendix B.2.6), or by constructing DDOT collections
that sample each term the same number of times. Using probabilistic arguments
in Appendix B.2.3 we show that still the number of circuits exponential in k and
logarithmic in N suffices if we want to have all k particle subsets sampled with
approximately equal frequency.

4.4.2 Experimental noise reconstruction

We implemented the procedure described in previous subsections with k = 5 for
IBM’s 15q Melbourne device and 23-qubit subset of Rigetti’s Aspen-8 device.
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The obtained correlation models are depicted in Fig. 4.2. In the case of Rigetti’s
device, our procedure reports a very complicated structure of multiple correla-
tions in readout noise, while in the case of IBM’s device the correlations are fairly
simple. We discuss this issue in detail in further sections while presenting results
of noise-mitigation benchmarks. Here we conclude by making an observation
that, despite common intuition, the structure of the correlations in the readout
noise can not be directly inferred from the physical layout of the device.

4.5 Noise mitigation on marginals

So far, we have described how to effectively characterize readout noise in a
quantum device. However, to make this knowledge useful in practice, we need
to first understandwhat are the effects of that noise on quantities wewish tomea-
sure in experiments. To this aim, in this Section, we will study how the correlated
readout noise affects marginal probability distributions. This has applications, for
example, in estimation of expected values of local Hamiltonians. Then we will
explain how the reconstructed noise model can be used to reduce the errors
on the estimators of marginal probability distributions, and comment on sample
complexity of such error-mitigation strategy. The more technical aspects of the
discussion can be found in Appendix B.1.

4.5.1 Noise on marginals – overview

Let us denote by pnoi s y a global probability distribution generated by measure-
ment of arbitrary quantum state on the noisy detector for which Eq. (4.3) holds.
As mentioned previously, for many interesting problems, such as QAOA or VQE
algorithms, one is interested not in the estimation of p itself (which is an expo-
nentially hard task), but instead in the estimation of multiple marginal probability
distributions obtained from p. Let us say that we are interested in the marginal on
a subset S formed by clusters Cχ indexed by a setA, S B ∪χ∈ACχ , where each
Cχ is some cluster of qubits (see green envelope on Fig. 4.3 for illustration). Our
goal is to perform error mitigation on S. To achieve this, we need to understand
how our model of noise affects marginal distribution on S.
From the definition of the noise model in Eq. (4.3) we get that the marginal

probability distribution pnoi s y
S
onS, is a function of the local noisematrices acting

on the qubits from S and the “joint neighborhood” of S, N (S) B ∪χ∈ANχ \ S
(the set N (S) consists of qubits which are neighbors of points from S but are
not in S) – we derive the exact form of that noise in Appendix B.1.1. Because of
this, one can not simply use the standard mitigation strategy: i.e., estimate pnoi s y

S

and reconstruct probability distribution pi deal
S
by applying the inverse of T.

To circumvent the above problem we propose to use the following natural
ansatz for the construction of an approximate effective noisemodel on themarginal
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(a) IBM’s Melbourne device, 15 qubits.

(b) Rigetti’s Aspen-8 device. Arrows indicate qubits which affect the measurement noise
on the left half of the device.

(c) Rigetti’s Aspen-8 device. Arrows indicate qubits which affect the measurement noise
on the right half of the device.

Figure 4.2: Depiction of the correlation model obtained with Diagonal Detector Over-
lapping Tomogaphy on a) IBM’s 15-qubit Melbourne device and b,c) a 23-qubit subset
of Rigetti’s Aspen-8 device. Due to the complicated structure of Rigetti’s correlations,
for clarity we divided the plots into two parts which show correlations on the left and
right halves of the device (the merged plot can be found in the Appendix B.5.2). The 8
black-and-white circles without label represent qubits which were not included in the
characterization due to poor fidelity of the single-qubit gates (below 98%). The mean-
ing of the rest of the symbols is described in the caption of Fig. 4.1b. The colors of the
lines connecting the neighbors on b,c) are provided such that the crossings of the lines
are unambiguous (and have no other meaning otherwise). For the layout of the graphs,
we used the qubits actual connectivity in the devices (i.e., it is possible to physically im-
plement two-qubit entangling gates on all nearest-neighbors in the graph). For IBM’s
device, we included the qubits in the cluster if the correlations given by Eq. (4.6) were
higher than 4% in any direction, while we marked qubits as neighbors if the correlations
were higher than 1%. In the case of Rigetti, the respective thresholds were chosen to
be 6% and 2%. Moreover, for Rigetti we imposed locality constraints by forcing the joint
size of the cluster and the neighborhood to be at most 5 by disregarding the smallest
correlations. In practice the correlations within clusters were significantly higher than
the chosen thresholds – heatmaps of all correlations can be found in Appendix B.5.2.
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S

TSav B
1

2|N (S)|

Õ
YN(S)

TYN(S) , (4.8)

where summation is over states of qubits in the joint neighborhood N(S) de-
fined above. In other words, it is a noise matrix averaged over all states of the
neighbors of the clusters in S, excluding potential neighbors which themselves
belong to the clusters in S. Indeed, note that it might happen that a qubit from
one cluster is a neighbor of a qubit from another cluster – in that case, one does
not average over it but includes it in a noise model. Importantly, the average ma-
trices TSav can be calculated explicitly using data obtained in the characterization
of the readout noise.

4.5.2 Approximate noise mitigation

The noise matrix TSav (Eq. (4.8)) can be used to construct the corresponding
effective correction matrix

ASav B
(
TSav

)−1
. (4.9)

Correcting the marginal distribution via left-multiplication by the above ansatz
matrix is not perfect and can introduce error in the mitigation. In the following
Proposition 1 we provide an upper bound on that error measured in TV distance.

Proposition 1. Let pnoi s y be a probability distribution on N qubits obtained from
the N qubit probability distribution pi deal via stochastic transformation T of the
form given in Eq. (4.3). Consider the subset of qubits S = ∪χ∈ACχ . Let p

corr
S

=

ASavp
noi s y

S
be the result of the application to the marginal distribution pnoi s y

S
of the

correction procedure using the effective correctionmatrix ASav from Eq. (4.9). We
then have the following inequality

TVD
(
pcorr
S
, pideal

S

)
≤ (4.10)

≤ 1

2
| |ASav | |1→1 max

YN(S)

| |TSav − TYN(S) | |1→1 , (4.11)

where the maximization goes over all possible states of the neighbors of S.

The proof of the above Proposition is given in Appendix B.1.2 – it uses the
convexity of the set of stochastic matrices, together with standard properties
of matrix norms and with a triangle inequality (similar methods were used for
providing error bounds on mitigated statistics in Ref. [42]). Note that the quantity
on RHS of Eq. (4.10) shows resemblance to ci→j in Eq. (4.6) (which we used to
quantify correlations). Hence 1

2
maxYN(S)

| |ΛS
av −ΛYN(S) | |1→1 can be interpreted as

the maximal TVD between states on S generated by ΛS
av and states generated
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Figure 4.3: Illustration of the cluster structure of an exemplary 9-qubit device. There
are two non-trivial clusters present ({0, 3} and {1, 2}). For clarity, no neighborhood de-
pendencies are shown, though in reality noise on the clusters can be dependent on the
qubits outside the clusters. When one measures all the qubits but the goal is to estimate
four-qubit marginal distribution on S = {0, 3} ∪ {1, 2} = {0, 1, 2, 3} (green envelope),
noise-mitigation should be performed based on the noise model for the whole set of
qubits S. On the other hand, when the goal is to estimate the two-qubit marginal on
qubits Sk = {0, 1} (red envelope), it is still preferable to first perform error-mitigation on
the four-qubit marginal on qubits S = {0, 1, 2, 3}, and then take marginals over qubits 2
and 3 to obtain corrected marginal on Sk . See the description in the text.

by ΛYNχ (which appear in the description of the noise model). This can be also
interpreted as a measure of dependence of noise between qubits in S and the
state of their neighbors just before measurement. Indeed, if the true noise does
not depend on the state of the neighbors, the RHS of inequality Eq. (4.10) yields
0, and it grows when the noise matrices

{
ΛYN(χ )

}
increasingly differ.

In practice, it might happen that one is interested in the marginal distribution
on the qubits from some subset Sk ⊂ S (red envelope in Fig. 4.3). In principle,
one could then consider a coarse-graining of noise-model within S (i.e., con-
struction of noise model averaged over qubits from S that do not belong to Sk ,
treating those qubits like neighbors) and perform error-mitigation on the coarse-
grained subset Sk . However, due to the high level of correlations within clusters,
we expect such a strategy to work worse than performing error-mitigation on
S, and then taking marginal to Sk . Indeed, we observed numerous times that
the latter strategy works better in practice. Yet, it is also more costly (since, by
definition, S is bigger than Sk ), hence in actual implementations with restricted
resources (e.g., a limited number of available circuit executions) one may also
consider implementing a coarse-grained strategy. In the following sections, we
will focus on error-mitigation on the setS. All those considerations can be easily
generalized to the case of Sk ⊂ S.

4.5.3 Sample complexity of error-mitigation

Let us now briefly comment on the sampling complexity of this error-mitigation
scheme (the detailed discussion is postponed to Section 4.7). If one is inter-
ested in estimating an expected value of local Hamiltonian, a standard strategy
is to estimate the local marginals and calculate the expected values of local
Hamiltonian terms on those marginals. Without any error-mitigation, this has
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exponential sampling complexity in locality of marginals (which for local Hamil-
tonians is small), and logarithmic complexity in the number of local terms (hence,
for typically considered Hamiltonians, also logarithmic in the number of qubits)
– see Eq. (4.17) and its derivation in Appendix B.1.3. Now, if one adds to this
picture error-mitigation on marginals, this, under reasonable assumptions, does
not significantly change the scaling of the sampling complexity. We identify here
two sources of sampling complexity increase (as compared to the non-mitigated
marginal estimation). First, the noise mitigation via inverse of noise matrix does
propagate statistical deviations – the bound on this quantitatively depends on
the norm of the correction matrix (see Ref. [42] and detailed discussion around
Eq. (4.17) in Section 4.7). Assuming that the local noise matrices are not singu-
lar (which is anyway required for error-mitigation to work), this increases sam-
pling complexity by a constant factor (in particular, for a given marginal, it is
proportional to the norm of the correction matrix acting on that marginal, see Ap-
pendix B.1.2 for details). Second, the additional errors can come from the fact
that, as described above, sometimes it is desirable to perform noise-mitigation
on higher-dimensional marginals (if some qubits are highly correlated). How-
ever, assuming that readout noise has bounded locality, this can increase a sam-
pling complexity only by a constant factor (this factor is proportional to the in-
crease of the marginal size as compared to estimation without error-mitigation).
In both cases, for a fixed size of marginals (as is the case for local Hamiltonians),
it does not change the scaling of the sampling complexity with the number of
qubits, which remains logarithmic.

4.6 Experimental benchmark of the noise model

4.6.1 Energy estimation of local Hamiltonians

After having characterized the noisemodel, how to assess whether it is accurate?
To answer this question we propose the following, application-driven heuris-
tic benchmark. The main idea is to test whether the error-mitigation of local
marginals based on the adopted noise model is accurate. To check this we pro-
pose to to consider the problem of estimation of the expectation value 〈H 〉 of a
local classical Hamiltonian

H =

Õ
α

Hα (4.12)

measured on its ground state |ψ0 (H)〉. Here by “local” wemean that themaximal
number of qubits on which each Hα acts non-trivially does not scale with the
system size. Classicality of the Hamiltonian means that every Hα is a linear
combination of products of σz Pauli matrices. In turn the ground state |ψ0 (H)〉
can be chosen as classical i.e.,

|ψ0 (H)〉 = |X (H)〉 , (4.13)

for some bit-string X (H) representing one of the states from the computational
basis. This problem is a natural candidate for error-mitigation benchmark due



4.6. Experimental benchmark of the noise model 85

to at least three reasons. First, a variety of interesting optimization problems can
be mapped to Ising-type Hamiltonians from Eq. (4.12). Indeed, this is the type
of Hamiltonians appearing in the Quantum Approximate Optimization Algorithm.
The goal of the QAOA is to get as close as possible to the ground state |ψ0 (H)〉.
Second, the estimation of 〈H 〉 can be solved by the estimation of energy of
local terms 〈Hα 〉 and therefore error-mitigation on marginals can be efficiently
applied. Finally, the preparation of the classical ground state |ψ0〉, once it is
known, is very easy and requires only the application of local σx (NOT) gates.
This works in our favor because we want to extract the effects of the readout
noise, and single-qubit gates are usually of high quality in existing devices.
To perform the benchmark we propose to implement quantum circuits prepar-

ing ground states of many different local classical Hamiltonians, measure them
on the noisy device, and perform two estimations of the energy - first from the
raw data, and second with error-mitigation based on our characterization. Nat-
urally, it is also desirable to compare both with the error-mitigation based on
a completely uncorrelated noise model (cf. Eq. (4.2)). We propose that if the
mitigation based on a particular noise model works well on average (over some
number of Hamiltonians), one can infer that the model is more accurate as well.

4.6.2 Experimental readout noise mitigation

We applied the benchmark strategy described above on the 15-qubit IBM’sMel-
bourne device and 23-qubit subset of Rigetti’s Aspen-8 device. We imple-
mented two classes of random Hamiltonians – MAX-2-SAT instances (600 on
IBM and 399 on Rigetti) and fully-connected graphs with random interactions
and local fields (600 on IBM).
The MAX-2-SAT problem is the simplest variant of the maximal satisfability

problem (MAX-k-SAT) [167]. In those problems, we are given some Boolean
formula, typically represented in the standard conjuctive normal form (CNF), that
is a set of logical AND statements between multiple clauses. Here, a clause
means an OR statement between k binary variables – in the case of MAX-2-
SAT, each clause is an OR statement between 2 variables. The task is to find
the maximum number of clauses that can be assigned the "true" value when
the assignment of binary values is made to the variables. The hardness of the
problem is controlled by the clause density parameter, i.e., the (average) number
of clauses per variable.
In our experiments, for MAX-2SAT we chose the clause density 4, and the

corresponding instances were generated by randomly choosing 4 ∗ N clauses
with N variables (N being the number of qubits), and mapping the resulting CNF
to an Ising Hamiltonian via the standard mapping (see, e.g., Refs. [168; 169]).
For fully connected graphs, the random interactions and local fields were chosen
uniformly at random from range [−1, 1]. Figure 4.4 presents the results of our
experiments, together with a comparison with the uncorrelated noise model.
Let us first analyze the results of experiments performed on a 15-qubit IBM’s

device. Here it is clear that the error-mitigation based on our noise model per-
forms well, often reducing errors in estimation by as much as one order of mag-
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Figure 4.4: Results of an experimental benchmark of the readout noise mitigation on (a-
b) IBM’s 15-qubit Melbourne device, and (c) a subset of 23 qubits on Rigetti’s Aspen-8
device. Each histogram shows data for 600 (IBM’s) or 399 (Rigetti) different random
Hamiltonians – (a,c) random MAX-2-SAT and (b) fully-connected graph with random
interactions and local fields. The horizontal axis shows the absolute energy difference
(between estimated and theoretical) divided by the number of qubits. The histogram
comparison is done with no mitigation and with uncorrelated noise model characteriza-
tion. The embedded tables show average errors depending on the adopted noise model.
Here "ratio" refers to ratio of means. Additional second row in each figure shows data
for noise model with only trivial (single-qubit) clusters and their neighborhoods. In case
of IBM data, the additional fifth row illustrates memory effects. See description in the
main text.
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nitude. We further note that the uncorrelated noise model performs quite well
(yet being visibly worse than ours). To compare the accuracy by using a single
number (as opposed to looking at the whole histogram), we take the ratio of the
mean deviations from the ideal energy for the error-mitigated data based on two
models. The results are presented in tables embedded into Fig. 4.4. In those ta-
bles, we provide also additional experimental data. Namely, for each figure there
the second row shows data for noise model labeled as "only neighbors". This
corresponds to noise model in which each qubit is a trivial, single-qubit clus-
ter, and correlations are included only via neighborhoods. The worse results
of error-mitigation for such model as compared to full clusters-neighborhoods
model motivates the introduction of non-trivial clusters. Furthermore, we found
experimentally that the characterization of the uncorrelated noise model exhibits
significant memory effects (see, for example, Ref. [170]). Particularly, if one per-
forms uncorrelated noise characterization in a standard way, i.e., by performing
characterization in a separate job request to a provider, without any other pre-
ceding experiments (“local 2” in tables), the accuracy (measured by the error in
energy after mitigation based on a given noise model) is much lower than for the
characterization with some other experiments performed prior to the character-
ization of the uncorrelated model (“local 1” in tables). Indeed, the difference in
mean accuracy can be as big as ≈ 26%.
Clearly, the overall performance of Riggeti’s 23 qubit device is lower than

that for IBM’s device. First, the effects of noise (measured in energy error per
qubit) are stronger. Second, the mean error with error-mitigation is only around
≈ 5.6 times smaller than the error without error-mitigation (as opposed to factor
over 22 for IBM’s device). Third, the comparison to the uncorrelated noise model
shows that the uncorrelated model performs not much worse than the correlated
one.
Here we provide possible explanations of this poorer quality of experiments

performed on Rigetti’s device. Due to the limited availability of the Rigetti’s device,
we used a much lower number of samples to estimate Hamiltonian’s energies in
those experiments. Specifically, each energy estimator for Rigetti’s experiments
was calculated using only 1000 samples, while for IBM’s experiments the number
of samples was 40960. This should lead to statistical errors higher by a factor of
roughly

√
41 ≈ 6.4 (and note that the errors in error-mitigated energy estimation

in Rigetti’s device are around 7.8 times higher than corresponding errors for IBM’s
device for the same class of Hamiltonians). Similarly, we used fewer measure-
ments to perform DDOT – on Rigetti’s device, we implemented 504 DDOT circuits
sampled 1000 each, while on IBM’s device we performed 749 circuits sampled
8192 each. Less DDOT circuits imply less balanced collection, hence, as already
mentioned, some correlations might have been overestimated. In summary, our
characterization of this device was in general less accurate than on IBM’s de-
vice. This might be further amplified by the fact that single-qubit gates (which
are used to implement DDOT circuits) were of lower quality for Rigetti’s device.
Finally, as illustrated in Fig. 4.2, we observed that correlations in measurement
noise for Rigetti’s device are much more complex than in the case of IBM’s. As
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mentioned in the Figure’s description, to work around this we imposed locality
constraints in the constructed noise model by disregarding the lowest correla-
tions between qubits, which made the model less accurate.
We note that due to the limited availability of Rigetti’s device, we did not per-

form the study of memory effects similar to that performed in IBM. The local
noise model presented for this device originates from a separate uncorrelated
noise characterization performed prior to the rest of the experiments (hence it is
analogous to the “local 2” model in IBM’s case).
To summarize, presented results suggest that in experiments on near-term

quantum devices it will be indispensable to account for cross-talk effects in
measurement noise. For both studied quantum devices we provided proof-of-
principle experiments showing significant improvements in ground state energy
estimation on the systems of sizes in the NISQ regime. Motivated by those re-
sults, we hope that the framework developed in this work will prove useful in the
future, more complex experiments on even larger systems.

4.7 Error analysis for QAOA

In this section, we analyze the magnitude of errors resulting from our noise-
mitigation scheme when applied to an energy estimation problem. Those errors
result from two sources. First, from the fact that we use approximate correction
matrices instead of the exact ones (see in Proposition 1). Secondly, by statistical
errors due to the common practice of measuring multiple marginals simultane-
ously in a single run of the experiment. In the following, we will analyze both
cases separately and then provide a bound that takes them both into account.
We restrict our analysis to local Hamiltonians diagonal in the computational ba-
sis. A detailed derivation of the results below can be found in Appendices.

4.7.1 QAOA overview

Before starting, let us provide a short overview of the QAOA algorithm. In stan-
dard implementation [144], one initializes quantum system to be in |+〉⊗N state,
where |+〉 = 1√

2
( |0〉 + |1〉). Then p-layer QAOA is performed via implementation

of unitaries of the form

Up (α, β) =

pÖ
j

UαjUβj , (4.14)

where α, β are the angles to-be-optimized. Unitary matrices are given by
Uαj B exp

(
−i αjHD

)
, and Uβj B exp

(
−i βjHO

)
, where HD is driver Hamil-

tonian (which we take to be HD =
ÍN

k σk
x ), and HO is objective Hamiltonian

that one wishes to optimize (i.e., to find approximation for its ground state en-
ergy). The quantum state after p-th layer is

��ψp

〉
= Up |+〉⊗N and the function

which is passed to classical optimizer is the estimator of the expected value〈
ψp

��HO

��ψp

〉
(note that this makes those estimators to effectively be a function
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of parameters
{
αj

}
,

{
βj
}
). The estimator is obtained by sampling from the dis-

tribution defined by the measurement of
��ψp

〉
in the computational basis, taking

the relevant marginals, and calculating the expected value of HO using values
of those estimated marginals. Let us now proceed to the analysis of possible
sources of errors while performing noise-mitigation on the level of marginals to
estimate the energy of local Hamiltonians, such as those present in QAOA.

4.7.2 Approximation errors

We start by recalling that performing noise mitigation with the average noise ma-
trix instead of the exact one subjects the estimation of each marginal to an error
upper bounded by Eq. (4.10). It follows that the correction of multiple marginal
distributions can lead to the accumulation of errors which for each marginal α
(we label subset of qubits by α so that local term Hα acts non-trivially on qubits
from α) take the form

δα
B

1

2
| |C

Sα
av | |1→1 max

YN(Sα )

| |TSα
av − TYN(Sα ) | |1→1 (4.15)

where set Sα = ∪γ∈ACγ , A = {χ | Cχ ∩ α , ∅}, consists of clusters to which

qubits from α belong, and CSα
av is the average correction matrix for the marginal

on that set. It is straightforward to show that the total possible deviation between
the error-mitigated expected value 〈Hcorr〉 and the noiseless one 〈H 〉 is upper
bounded by

|
〈
Hcorr

〉
− 〈H 〉 | ≤ 2

Õ
α

δα | |Hα | |

(additive approximation bound) .
(4.16)

4.7.3 Additive statistical bound

Moving to the effect of measuring several marginals simultaneously, let us start
by considering the simplest bound on the propagation of statistical deviations un-
der our error-mitigation. In Appendix B.1 we derive that the Total-Variation Dis-
tance (TVD, Eq. (4.7)) between the estimator pestα and the actual local marginal
pα is upper bounded by

TVD
(
pestα , pα

)
≤ (4.17)

≤ ǫ∗ B

vt
log

(
22

N − 2
)
+ log

(
1

Perr

)
+ log (K )

2s
, (4.18)

whereN is the number of of qubits in the support of each local term (for simplicity
we assume it to be the same for all Hα ), K is the total number of local terms, s is
the number of samples, and 1−Perr is the confidencewith which the above bound
is stated. Importantly, the above bound is satisfied for each marginal simultane-
ously, hence the logarithmic overhead l og (K ). Using Eq. (4.17) together with
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standard norm inequalities one obtains the following bound for the total energy
estimation

|Hestcorr − 〈H 〉 | ≤
Õ
α

| |H α | | | |Aα | |1→1 ǫ
∗

(additive statistical bound) .

Here Hestcorr denotes the estimator of the total energy with error-mitigation per-
formed on each local term independently and Aα is the exact (not approximate)
correction matrix on marginal α .

4.7.4 Joint approximation and statistical bound

The two bounds provided above took into account the two considered sources
of errors independently. By using the triangle inequality (see Appendix B.1.4),
we can now combine them to obtain

|Hestcorr − 〈H 〉 | ≤ (4.19)

2

Õ
α

| |H α | |

©���
«
ǫ∗ | |ASα

av | |1→1|         {z         }
statistical errors

+ δα|{z}
approximation errors

ª®®®
¬
. (4.20)

It follows that the dominant scaling in the overall error are linear in the number
of terms K caused by summing over all of them and the logarithmic overhead in
ǫ∗ added by the statistical errors.

4.7.5 Sampling complexity of energy estimation

While the additive bound from Eq. (4.19) could be tight in principle, we observed
numerically on many occasions that in practice the statistical errors are much
smaller (see Fig. 4.5 for exemplary results that are discussed in Section 4.7.8).
Here we will provide arguments that show that natural estimators of local en-

ergy terms Hα effectively behave as uncorrelated for a broad class of quantum
states, hence leading to a significantly smaller total error than that obtained from
an additive bound.
We start by describing in detail the natural strategy for energy estimation in the

considered scenarios. In this work we are concerned with classical local Hamil-
tonians. This means that all local terms Hα can be measured simultaneously via
a single computational basis measurement. The natural estimation procedure
amounts to repeating s independent computational basis measurements on a
quantum state ρ of interests. Outcomes of these measurements are then used to
obtain local energy estimators E estα =

1

s

Ís
i=1 E

i
α , where E

i
α are values of the local

energy terms obtained in the i ’th experimental run. Now to perform estimation
of expected value of energy, 〈H 〉, we simply sum the local estimators E estα

Hest =
Õ
α

H estα =
1

s

sÕ
i=1

Õ
α

E i
α . (4.21)
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It is clear that Hest is an unbiased estimator of 〈H 〉. Likewise E estα are unbiased
estimators of 〈Hα 〉.
We would like to understand statistical properties ofHest (specifically its vari-

ance) as as a function of number of experimental runs (samples) s and the num-
ber of local terms in the Hamiltonian K . To this and we observe that random
variables E i

α , E
j

β
are independent unless i = j and therefore

Var
(
Hest

)
=

1

s

Õ
α ,β

Cov(E i
α , E

i
β ) , (4.22)

Assuming that measurements of the energy E i
α are distributed according to the

probability compatible with the Born rule allows us to write

Cov(E i
α , E

i
β ) = Cov

(
Hα ,Hβ

)
=
〈
HαHβ

〉
− 〈Hα 〉

〈
Hβ

〉
. (4.23)

Consequently we have

Var
(
Hest

)
=

1

s
Var(H) =

Õ
α ,β

Cov(Hα ,Hβ ). (4.24)

The variance of Hest can be related to the sample complexity of the energy
estimation. Let ∆E > 0 be some positive number. Then using Chebyshev in-
equality we get

Prob
(
|Hest − 〈H 〉 | ≥ ∆E

)
≤
Var

(
Hest

)

(∆E )2
. (4.25)

Choosing some parameter Pf as an upper bound bound on the RHS of this in-

equality, i.e.,
Var(Hest)

(∆E )2
≤ Pf . Then we obtain using (4.24) that for the number of

samples s satisfying

Var (H)

(∆E )2Pf
≤ s . (4.26)

the estimator Hest will be within accuracy form the expectation value 〈H 〉 with
probability at least 1 − Pf . Now, if different Hamiltonian termsHα are correlated
then according to the above bound the sample complexity grows like K 2, where
K is the total number of terms inH . Conversely, if Cov(Hα ,Hβ ) ≈ 0 (for α , β )
then get sample complexity scaling linearly with K . Below, we will provide some
arguments for making the approximation Cov(Hα ,Hβ ) ≈ 0, i.e., that the variables
are effectively uncorrelated.
The above consideration can be equivalently translated to the estimates of

the confidence intervals associated with estimatorHest for a fixed value of sam-
ples s . Specifically, if local terms are uncorrelated, then the confidence inter-
val (statistical error) will scale as square-root

√
K of the number of Hamiltonian
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terms, contrary to the pessimistic bound in Eq. (4.19) which is linear in K . We
now show that one should expect that the sub-linear scaling of energy errors
described above holds for a variety of quantum states, which in turn greatly re-
duces the sampling complexity compared to the pessimistic (linear) bound. We
want to emphasize that our results are of immense practical importance for near-
term devices. Our findings indicate a reduction (compared to the naive bounds)
of sample complexity of energy estimation by orders of magnitude, even for rel-
atively small systems (K ≈ 100 and larger).

4.7.6 Generic 2-local Hamiltonians in QAOA

We start by considering states that appear at the beginning and at the end of
QAOA. In recent work [171] it was shown that after p-th layer of QAOA opti-
mization, for given two local terms Hα andHβ , there is no entanglement between
qubits from α and qubits from β if they are further away from each other than 2p
(on a graph corresponding to interactions present in a Hamiltonian). Therefore,
for generic QAOA optimization, one can expect that for low p , i.e., at the begin-
ning of the QAOA, the local Hamiltonian terms will be uncorrelated variables.
The following Proposition provides a more quantitative description of the vari-

ance behavior for generic 2-local Hamiltonians corresponding to randomgraphs.

Proposition 2. Consider Hamiltonian with connectivity given by Erdös-Rényi
random graph [171] in which each edge of the graph is added independently
at random with some fixed probability. Assume that the probability of adding
edge is chosen so the average degree of a node is equal to q =

K
N
, hence that

a random graph has on average N nodes and K edges. For QAOA starting from
product state, if the number of layers satisfies

p <
w log(N )

8 log(2q/ln(2))
− 1 (4.27)

with w < 1, then with probability 1 − e−N
a/2
the variance of the Hamiltonian is

bounded by

Var (H) ≤ fH q N A+1 (4.28)

where

fH = max
α ,β

| |Hα | | | |Hβ | | ,

A = w
(2 + | log2q (ln(2)) |)

(1 + | log2q (ln(2)) |)
,

a =
w

3(1 + | log2q (ln(2)) |
,

where maximization in first definition goes over all two-qubit local terms act-
ing on subsets of qubits α and β . Since we can always choose w < 1 such
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that A < 1, the variance thus scales sub-quadratically for shallow depth QAOA.
Importantly, the parameterw can be chosen in such a way that A goes asymp-

totically to 0 (an exemplary choice is w = O (log(N )−
1

2 ), which in turn means
that in the large N regime the variance Var(H) will scale almost linearly with
the number of terms.

The proof of the above Proposition 2 uses insights from Ref. [171] and is
delegated to Appendix B.4.2.

4.7.7 Random quantum states

A simple argument can be made to show that for generic Haar-random pure
sates, as well as random states appearing in random local quantum circuits, the
variance of a local Hamiltonian H behaves as if different energy terms were in-
dependent. Let |ψ〉 be a pure state on (Ã2)⊗N . For a subset of qubits γ, let ργ
denote the reduced density matrix |ψ〉〈ψ | on qubits in γ, and let idγ denote the
normalized maximally mixed state on qubits in γ. Assume now that local Hamilto-
nian terms Hα ,Hβ have disjoint supports. It can be then shown (see Proposition
4 in Appendices for the proof) that

Cov(Hα ,Hβ ) ≤ 3‖Hα ‖‖Hβ ‖ ‖ρα∪β − idα∪β ‖1 . (4.29)

Now, it is a well-known fact [172] that with overwhelming probability all few-
body marginals ργ of a Haar-random multiqubit states |ψ〉 are exponentially
close to maximally mixed states. Therefore, assuming thatmaxα ,β does not scale
with the system size, we have that high probability over the choice of |ψ〉, for ev-
ery disjoint terms Hα ,Hβ in a local HamiltonianH

Cov(Hα ,Hβ ) ≈ 0 . (4.30)

The above reasoningmimics the computation done in Theorem1of [173], where
it was used to establish that generic Haar-random pure states attain only the
so-called standard quantum limit in the paradigmatic interferometric scenarios
(again the underlying argument was based on the fact that all few-body reduced
density matrices of a generic pure state |ψ〉 are very close to maximally mixed
states with overwhelming probability).
Analogous analysis can be carried out for typical states generated by lo-

cal random quantum circuits. Such circuits are known to form approximate t-
designs, i.e., capture properties of typical Haar-random unitaries captured by
low-degree moments [174]. Specifically, a recent paper [175] considered evo-
lution of local entropies for pure states |ψ〉 generated by shallow local random
quantum circuits. From Theorem 1 of that work it directly follows that with proba-
bility greater than 1− δ over the choice random states |ψ〉 generated by random
local circuits in the brick-wall architecture of depth r , all marginals ργ of size
|γ | = k , satisfy ‖ργ − idγ ‖1 ≤ ǫ, where

δ ≤
(N
k

)2

ǫ2

 
2
2k−N + 2

k

(
4

5

)2(r−1)!
. (4.31)
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Figure 4.5: Numerical results illustrating low statistical errors in the estimation of the
energy of local Hamiltonians. We show the results for the energy of 8-qubit random
Sherrington-Kirkpatrick Hamiltonians, calculated on quantum states obtained after the
third layer of QAOA optimization. The horizontal axis shows the number of Hamilto-
nian elements (in a sense that for a given Hamiltonian one estimates only some lo-
cal terms). The Y-axis shows the absolute difference energy error. Each data point
is an average over 92 Hamiltonians. Red triangles correspond to additive error bound
from Eq. (4.19) (with correction matrix norm set to 1 and approximation errors to 0 for
noiseless scenario). Magenta circles show the confidence intervals on energy estima-
tion corresponding to 5σ-confidence (via Chebyshev’s bound) assuming uncorrelated
variables for the sample size s ≈ 10

4 (see Eq. (4.26) and description in the text). Green
stars are analogous confidence intervals estimated in numerical simulations (for each
Hamiltonian empirical standard deviations were obtained by repeating simulation 100
times). Plot a) shows results for the noiseless scenario, while b) shows results for the
error-mitigated scenario with noise mitigation performed on marginals and noise model
inspired by IBM’s device’s characterization.

Clearly, if the size of themarginals k is fixed, setting r = c log(N /ǫ), for a suitable
constant c, allows us to conclude that for all γ such that |γ | ≤ k one has ‖ργ −
idγ ‖1 ≤ ǫ with probability approaching 1 with the increasing system size.

4.7.8 Effects of measurement noise

To conclude, let us provide some analysis of the effects of measurement noise
mitigation on the above considerations. First, let us note that it is straightforward
to generalize all of the above arguments to include the uncorrelated readout
noise. Intuitively, if the measurement noise is not correlated, it cannot increase
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the level of correlations in the energy estimators, and the same holds for noise-
mitigation for such model (see Appendix B.4.3 for derivations).
For the correlated noisemodel, it is hard to provide analytical results, however,

one can expect that if correlations in measurement noise are mild, then it should
not drastically increase sample complexity. To test this hypothesis for small sys-
tem sizes, we performed numerical simulations in the following way. Consider
confidence intervals of the energy estimation. The most pessimistic bound on
the error, as already explained, is given by Eq. (4.19) and is additive in the num-
ber of Hamiltonian terms K (if one considers the situation without measurement
noise, then it suffices to set δα = 0 and | |CSα

av | |1→1 = 1 and Eq. (4.19) still holds).
To obtain confidence intervals expected for uncorrelated variables, we simply
set Var (H) =

Í
α Var (Hα ), and provide corresponding confidence interval by

calculating LHS of Eq. (4.26). To test whether resulting bounds are close to what
happens in practice, we numerically estimate the variance of H and calculate
the resulting confidence intervals. Such estimation of variance can be done, for
example, by performing multiple numerical experiments, each giving an empiri-
cal estimate of Var (H) (for a fixed number of samples s), and taking the mean
of those estimates. Such comparison is plotted on Fig. 4.5 for the system of
N = 8 qubits and Hamiltonians estimated on the states coming from 3-layer
QAOA. Bound Pf on the probability (of energy estimator being outside the cal-
culated confidence interval) in Chebyshev’s inequality is set to Pf = 0.04 which
corresponds to 5σ-confidence. Shown are results for the noiseless scenario,
and for the error-mitigated estimators with the noise model inspired by IBM’s
device characterization. It is clear that for tested Hamiltonians the confidence
intervals in the estimation behave roughly like for uncorrelated variables.

4.8 Effects of measurement errors on QAOA – numerical study
In this section we apply our noise characterization andmitigation strategies to nu-
merically study the effects of correlated measurement errors on QAOA and how
they can be reduced with our techniques. As test Hamiltonians, we choose those
encoding random MAX-2SAT instances with clause density 4, the Hamiltoni-
ans corresponding to fully-connected graphs with random interactions and local
fields with magnitude from [−1, 1], and the Sherrington-Kirkpatrick (SK) [176]
model in 2D (i.e. random Gaussian ZZ interactions on a square lattice).
For all models, we classically simulate a QAOA algorithm on an 8-qubit device

with a number of layers ranging from p = 3 to 30. The parameter optimization
is performed using Simultaneous perturbation stochastic approximation (SPSA)
[177; 178; 156; 61] (see Appendix B.5.1 for details of optimization). As a cor-
related noise model, we adopt one inspired by our previous characterization of
the IBM 15-qubit device.
We first simulated the result obtained by a QAOA algorithm where both the

energy estimation and the gradient estimation used to guide the state evolution
were affected by readout noise. For different numbers of gate layers, we com-
pared the resulting energy estimators between an optimization guided by noisy



4.8. Effects of measurement errors on QAOA – numerical study 96

Figure 4.6: Numerical study of the effects of readout noise on energy estimation for
QAOA on an 8-qubit system. The algorithm is used to prepare the ground state of a,d)
Hamiltonians encoding random MAX 2-SAT problems, b,e) Hamiltonian corresponding
to a fully-connected graph with uniformly random (from [−1, 1]) interactions and lo-
cal fields, and c,f) the 2D Sherrington-Kirkpatrick model. In each plot, the horizontal
axis shows a number of layers in the QAOA optimization, while the vertical axis shows
the absolute difference between obtained and theoretical energies per qubit. Each data
point is the average over 96 Hamiltonians. Note that we made an offset on the y-axis in
order to make differences visible. Red data-points indicate optimization guided by noisy
function evaluations, green points indicate noise-mitigated evaluations, while blue lines
correspond to noiseless optimization given for reference. The estimators were obtained
from ≈ 10

4 samples. Due to differences in spectra of various Hamiltonians over which
themean is calculated the fluctuations around the presentedmeans are very high, there-
fore for clarity we decided not to include error bars.

estimators (“noisy-guided” in Fig. 4.6) and the optimization guided by estima-
tors on which error-mitigation was performed (“corrected-guided” in Fig. 4.6).
The results of our numerical studies are presented in the first column of Fig. 4.6,
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together with the noiseless case as a reference. Note that to make differences
more visible, we set offset on the vertical axis. It is clear that for the considered
Hamiltonians, the noise-mitigated estimators are much better than noisy ones.
This suggests that our noise-mitigation scheme can be used to obtain an overall
more reliable QAOA algorithm.
For our second analysis, we wanted to closely analyze the effects of noise

(and its mitigation) on the parameter optimization only. To do so, we still compare
the results of QAOA between the cases where the optimization is guided by a
noiseless, noisy (“noisy-guided” in Fig. 4.6) and noise-mitigated (“corrected-
guided” in Fig. 4.6) energy estimators. However, in order to isolate the effect
of noise on the optimization procedure, instead of sampling the energy from the
noisy probability distributions, we calculated its expectation value directly on the
quantum state obtained at each layer of the QAOA circuit (the same circuits as
in left column). As a theoretical comparison between the optimal parameters
found by QAOA, we took the distance between the resulting average energies
on the state, divided by the number of qubits. The plots in the second column
of Fig. 4.6 show our numerical results. For both of the considered models, the
noise-mitigated optimization leads to better parameters regions. We note that
the difference is not high, yet it is systematic. Since this is the case already for 8
qubits, one can expect that for bigger systems, the relative improvement will be
higher.
To conclude, let us stress that the purpose of this section was to illustrate the

possible effects of mildly correlated, realistic readout noise on QAOA algorithm.
The above results clearly indicate that correlated readout noise can potentially
influence the optimization, as opposed to an identical and uncorrelated one (see
Ref. [153]). We find that in a number of instances the error-mitigation strategy
helps to land in better parameters regions, however, we also note that the effects
of noise on the optimization are not dramatic in the studied cases. From the point
of view of near-term applications, this should be viewed as a positive result – the
noise does not seem to strongly affect optimization, yet even those mild effects
can be reduced by performing our error-mitigation. Furthermore, we note that
due to the stochastic nature of the SPSA optimizer, the results might differ from
run to run (each data point presented in the plots comes from the results of the
optimization run which was the better one amongst two performed independent
optimizations, see Appendix B.5.1 for details). Finally, we note that to obtain ac-
curate estimates of energy, the noise-mitigation, unsurprisingly, remains highly
beneficial.

4.9 Summary

In the first part of this Chapter, we proposed an efficiently describable model
of correlated measurement noise in quantum detectors. The basic idea of the
model is to group qubits into strongly-correlated clusters that are mildly affected
by their neighborhoods, which, provided that the size of those groups is bounded
by a constant, allows to describe a global noise model by much smaller number
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of parameters compared to the most generic situation. To characterize our noise
model, we have introduced Diagonal Detector Overlapping Tomography, which
is a procedure inspired by recently introduced Quantum Overlapping Tomogra-
phy [151], tailored to the efficient characterization of the proposedmeasurement
noise model. Similarly to the [151], proposed method can estimate k-qubit cor-
relations in measurement noise affecting N-qubit device using O

(
k 2k log (N )

)

randomly chosen quantum circuits. We have shown that the measurement noise
can be efficientlymitigated in problems that require estimation ofmultiplemarginal
probability distributions, an example of which is Quantum Approximate Optimiza-
tion Algorithm [144]. Importantly, from the fact that noise-mitigation is per-
formed onmarginal distributions it follows that sampling-complexity of noisemit-
igation is similar to that of the original problem, provided that cross-talk in read-
out noise is of bounded locality. We proposed a benchmark of the noise model
and error reduction, which we implemented in experiments on up to 15 qubits on
IBM’sMelbourne device and on 23 qubits on Rigetti’s Aspen-8 device, and con-
cluded significant improvements compared to simple, uncorrelated noise model.
Interestingly, additional experimental data have pointed at previously unreported
memory effects in IBM’s device that were demonstrated to not-negligibly change
the results of experiments.
In the second part of the Chapter, we provided an analysis of the statistical

errors one may expect when performing the simultaneous estimation of multi-
ple local terms of Hamiltonian on various classes of states. We provided sim-
ple arguments why low sampling complexity (i.e., scaling of the variance as the
square-root of a number of local Hamiltonian terms) should be expected from
Haar-randomquantum states, and for states generated by shallow randomquan-
tum circuits. Similarly, we gave some arguments based on [171], why for states
appearing at the beginning and at the end of the QAOA, one may expect that
estimated local terms will effectively behave as uncorrelated variables, reducing
the sampling complexity. Furthermore, we have provided analytical results for
Hamiltonians encoding random MAX-2-SAT instances.
In the last part of the Chapter, we have presented numerical results and ex-

tended discussion of the effects that correlated measurement noise can have on
the performance of QAOA. We have demonstrated that already for 8 qubits the
correlatedmeasurement noise can alter the energy landscape in such away, that
the quantum-classical optimization leads to sub-optimal energy regions (com-
pared to reference runs without noise). At the same time, we demonstrated that
our noise-mitigation procedure can reduce those effects, improving optimiza-
tion.



5. Discussion

5.0.1 Summary

In this Thesis, we studied, frommultiple perspectives, how classical randomness
can be useful for analysis of various quantum computing protocols. In Chap-
ter 3, we introduced quantum average-case (AC) distances between quantum
states, quantum measurements, and quantum channels. Those distances, ex-
pressed via simple functions of underlying objects, bound the average-case
total-variation distances between corresponding probability distributions (recall
Theorems 1, 2, and 3). Hence, the AC distances have sound operational in-
terpretation of quantifying the statistical distinguishability of two objects using
randomized protocols. Indeed, as discussed in Section 3.5, considering the fact
that our bounds hold for approximate unitary 4-designs, it follows that, in prin-
ciple, even very high-dimensional objects could be distinguished with random-
ized protocols involving circuits of very low (logarithmic in the number of qubits)
depth. While this certainly is an interesting insight, “there is no free lunch”, and,
in general, the cost of the distinguishability is moved from circuit depth to poten-
tially exponentially costly classical post-processing. Intuitively, this means that
while we can always implement a random ensemble of shallow-depth circuits,
we do not provide a recipe for how to use the measurement outcomes to actually
distinguish between given two objects (and we expect it to be, in general, very
costly).
While this finding doesn’t thus provide a practical application of classical ran-

domness for statistical distinguishably, our further analysis in Section 3.5 demon-
strates that AC distances provide a flexible new tool for analyzing the average-
case behavior of noisy quantum protocols. In particular, we have shown that, in
simplified scenarios, we can calculate AC distances to obtain bounds on how,
on average, the noisy probability distribution (e.g., resulting from imperfect re-
alization of a quantum measurement) i) deviates from ideal distribution (result-
ing from theoretical, ideal quantum measurement); and ii) converges to useless,
uniform distribution (equivalent to performing “trivial” measurement that returns
outcomes completely at random). In this case, we have demonstrated that the
classical randomness can be viewed as a useful tool that allows to gain in-
sights on the average-case behavior of noisy quantum protocols.
On more technical side, we studied multiple properties of AC distances – we

have shown that our distances indeed fulfill metric axioms, they are subaddi-
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tive with respect to tensor products, have a joint convexity property, and are
non-increasing under unital quantum channels. We analyzed in detail exem-
plary scenarios where we believed AC distance provided an insight into some
aspect of quantum information science – such as consequences of noise ac-
cumulation for protocols involving random circuits in Section 3.5. Moreover, in
Section 3.5.4, we performed extensive numerical studies that demonstrated the
usefulness of AC distances as compared to worst-case distances. This includes
practically-relevant ensembles of random quantum circuits with the structure of
variational circuits, used in hybrid quantum-classical protocols such as Quan-
tumApproximate Optimization Algorithm (QAOA) and Variational Quantum Eigen-
solver (VQE).
In Chapter 4, we have turned our attention to the problem of characterizing

and reducing the effects of classical measurement noise. We have introduced
Diagonal Detector Overlapping Tomography – a protocol that exploits classical
randomness to characterize locally-correlated measurement noise. We have

shown that the protocol is scalable, in the sense that it requires onlyO
(
2
(k ) log(n)

)

circuits to characterize k-local noise on n-qubit device. Here, the classical
randomness turned out to be an indispensable resource allowing for efficient
characterization of measurement noise in experiments.
Moreover, in that Chapter, we proposed a simple noise model that aims to

capture small-range correlations between qubits in a non-trivial way. We con-
sidered how additional classical post-processing, based on DDOT results, can
be used to perform error mitigation on the level of marginal probability distri-
butions. We further studied correlation decay in local observables of random
graphs in the standard QAOA setting and presented bounds on the variance of
generic Hamiltonians estimated on states resulting from the application of shal-
low QAOA circuits.
To support the practical relevance of our findings, we performed extensive

numerical simulations that investigated the effects of correlated measurement
noise on QAOA optimization (together with error mitigation). Importantly, we
presented experimental results obtained on Rigetti’s and IBM’s superconducting
quantum systems, that demonstrated the effectiveness of proposed error char-
acterization and mitigation strategies. We obtained a reduction of errors by a
factor as big as ∼ 22 for 15-qubit experiments on IBM’s device.
We believe that, across both main Chapters of this Thesis, we have provided

multiple scenarios which demonstrated that

Auxiliary classical resources can be used to assess and improve the
quality of the implementation of noisy quantum measurements

As such, we are convinced that our findings provide strong arguments in favor
of the principal hypothesis advanced in the Thesis. Let us now conclude the
dissertation by discussing possible future research directions.
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5.0.2 Future research directions

Average-case quantum distances

Our work presented in Chapter 3 leaves many interesting problems left for future
research. The first important question one can ask is how to estimate quantum
average-case distances in an easy-to-implement setting. A natural candidate
seems to be randomized benchmarking types of experiments, as they also em-
ploy unitary designs [89; 79]. It would be also very interesting to connect quan-
tum average-case distances with commonly used figures of merit used to as-
sess the quality of quantum devices. Those include measures such as average
fidelity [89] (which is perhaps the most widely used quality measure), unitarity
of quantum channels [179; 180; 79], or partitioned trace distances [181]. We
note that the partitioned trace distances share with the average-case distances
the property of being non-increasing under unital channels, which might sug-
gest a deeper connection between the two. Furthermore, one can ask whether
similar results can be obtained for different functions of output probability distri-
butions such us classical fidelity or f -divergences [182; 183]. Another natural
direction to pursue is to obtain better constants that appear in bounds (for exam-
ple by considering higher moments) relating the average TV distance with the
quantum average-case distance. Another straightforward research direction is
to check how the quantum average-case distances compare with worst-case
distances for small subsets of qubits in actual quantum devices. For example, for
pairs of qubits full Quantum Process Tomography [17] (or even Gate Set Tomog-
raphy [184]) is possible, therefore one would be able to calculate the distances
directly from objects in question. Such studies could provide some insight into
what to expect from existing devices in worst and average-case scenarios.

Readout noise characterization and mitigation

We believe that our findings from Chapter 4 will prove useful in both near- and
long-term applications as efficient methods of characterizing and reducingmea-
surement noise. At the same time, we find that a number of future research direc-
tions opens. It is natural to ask howwell the error mitigation will perform in actual
multi-qubit experiments of QAOA, which can be tested only with more access to
the quantum devices than is available for the public via cloud services. Similarly,
testing noise mitigation in more general, Variational Quantum Eigensolver (VQE)
scenarios is of great interest [185; 186].
The analysis of statistical errors in the VQE setup is a natural extension – we

note that since the local terms in VQE Hamiltonians do not commute, it is less
straightforward than in the QAOA scenario. Another interesting problem is to
designmore benchmarks for the noisemodel andmitigation than the onemethod
described in this work. A natural extension of techniques presented in this work
would be to develop more methods for inference of correlations structure and
construction of noise model from DDOT data. Having a noise model for marginal
probability distributions, it is desirable to test and compare techniques of noise
mitigiation that go beyond a standard noisematrix inversion analyzed in this work.
In particular, methods based on Bayesian inference [138], or on symmetrization
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of noise via randomized twirling [122; 124], seem promising.
Moreover, it is tempting to ask whether error-mitigation performance and

demonstrated memory effects are stable over time, a question which is often
omitted (see however recent work [187] where systematic methods for study-
ing time instabilities were developed and [188] which made an important con-
tribution by studying the stability of various types of noise over time for IBM’s
devices). Another open problem is to find out whether further generalizations of
QuantumOverlapping Tomography can be used to perform reliable characteriza-
tion of more general types of noise – coherent measurement noise and the noise
affecting quantum gates. For example, in the work [189] the authors consider
an ansatz for the generic noisy quantum process which uses only 2-local noise
processes – a setup which seems natural to benefit from similar techniques. In
Refs. [190; 191] the authors develop methods of estimating generic Pauli chan-
nels, and it would be of great interest to assess whether those methods can ben-
efit from using measurement error-mitigation techniques such as ours. A very
important research problem is that of mitigating measurement noise in scenarios
which include estimators obtained from a very few samples, such as those in
Refs. [84; 192]. We note that in its current form our methods cannot be directly
implemented in such scenarios because they operate on marginal probability
distributions.
Finally, it would be extremely interesting to investigate whether our model

of measurement noise is accurate for quantum devices based on architectures
different than transmon qubits, such as flux qubits [193], trapped ions [194] or
photonic quantum devices [195]. We intend to investigate some of the listed
problems in future works.
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A. Operational Average-Case Distances

Herewe provide proofs ofmore technical results of Chapter 3 – proof of Lemma5
(Appendix A.1) and proofs of main Theorems 1, 2, 3 for approximate 4-designs
(Appendix A.2).

A.1 Proof of Lemma 5

In what follows we prove Lemma 5, which we repeat here for Reader’s conve-
nience.

Lemma 29 (Repeated Lemma 5). Let X ,Y ∈ Herm(H) be Hermitian opera-

tors acting on H ≃ H . Let Ð(k )
sym denotes the orthogonal projector onto k-fold

symmetrization ofH (k )
sym ⊂ H⊗k . We then have the following inequality

tr
(
X ⊗2 ⊗Y ⊗2

Ð
(4)
sym

)
≤ C tr

(
X ⊗2

Ð
(2)
sym

)
tr
(
Y ⊗2

Ð
(2)
sym

)
, where C =

13

6
. (A.1)

Proof. We begin by noting that, for Hermitian matrices A and B we have

tr
(
(A⊗2 ⊗ B⊗2) (Ð(2)

sym ⊗ Ð
(2)
sym)

)
=

1

4
(tr(A2) + (tr(A))2) (tr(B2) + (tr(B))2). (A.2)

We also have

4! tr
(
(A⊗2B⊗2)Ð(4)

sym

)
= ((tr(A))2 + tr(A2)) ((tr(B))2 + tr(B2))

+ 4 tr(A) tr(B) tr(AB) + 4 tr(A) tr(AB2) + 4 tr(B) tr(A2B)

+ 2(tr(AB))2 + 2 tr(A2B2) + 2 tr(ABAB).
(A.3)

Now we consider the following difference for, with arbitrary scalar parameter c

c tr
(
(A⊗2 ⊗ B⊗2) (Ð(2)

sym ⊗ Ð
(2)
sym)

)
− tr

(
(A⊗2 ⊗ B⊗2)Ð(4)

sym

)
=

=
1

4!

(
(6c − 1) (tr(A2) + (tr(A))2) (tr(B2) + (tr(B))2)

− 4 tr(A) tr(B) tr(AB) − 4 tr(A) tr(AB2) − 4 tr(B) tr(A2B)

− 2(tr(AB))2 − 2 tr(A2B2) − 2 tr(ABAB)
)
.

(A.4)
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Now we will bound the terms which occur above using standard inequalities, to
get

−4 tr(A) tr(B) tr(AB) ≥ −4| tr(A) | | tr(B) |
p
tr(A2)

p
tr(B2) ≥

≥ −2( | tr(A) |2 | tr(B) |2 + tr(A2) tr(B2));

−4 tr(A) tr(AB2) ≥ −4| tr(A) |
p
tr(A2)

p
tr(B4) ≥ −4| tr(A) |

p
tr(A2) tr(B2) ≥

≥ −2( | tr(A) |2 + tr(A2)) tr(B2);

−4 tr(B) tr(A2B) ≥ −4| tr(B) |
p
tr(B2)

p
tr(A4) ≥ −4| tr(B) |

p
tr(B2) tr(A2) ≥

≥ −2( | tr(B) |2 + tr(B2)) tr(A2);

−2(tr(AB))2 ≥ −2 tr(A2) tr(B2);

−2 tr(A2B2) ≥ −2 tr(A2) tr(B2);

−2 tr(ABAB) ≥ −2 tr(A2) tr(B2).

(A.5)

Combining above inequalities, we will determine the value of parameter c, for
which (A.4) is non-negative

c tr(A⊗2 ⊗ B⊗2) (Ð(2)
sym ⊗ Ð

(2)
sym) − tr(A⊗2 ⊗ B⊗2)Ð(4)

sym ≥

=
1

4!

(
(6c − 1) (trA2 + (trA)2) (trB2 + (trB)2) − 12 trA2 trB2

− 2| trA |2 | trB |2 − 2| trA |2 trB2 − 2| trB |2 trA2

)

=
1

4!

(
(6c − 13) trA2 trB2 + (6c − 3) (trA2(trB)2 + (trA)2 trB2 + (trA)2(trB)2)

)
.

(A.6)

Note, that the above is larger than 0 for c ≥ 13/6. �

A.2 Proofs of main theorems for δ-approximate 4-designs

Here we outline the extension of proofs of Theorems 1, 2, 3 for approximate
4-designs.

A.2.1 Quantum states and measurements

We will start with quantum states. Let us consider δ-approximate 4-design ν
(recall Section 2.5), i.e., we have

��T4,ν − T4,µ
��
⋄ ≤ δ , (A.7)

where µ is the Haar measure in U(Hd) and T4,ν is the quantum channel acting on
H⊗4
d defined as T4,ν (A) =

´

U(Hd)
dν (U )U ⊗4A(U †)⊗4. For a measure ν = {να ,Uα }
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on U(Hd) let ν̃ denote a measure supported on ’inverted gates’ i.e. ν = {να ,U
†
α }

(the generalization to non-discrete measures is straightforward). From the defi-
nition of the diamond norm and the identity µ = µ̃ it follows that

��Tk ,ν − Tk ,µ
��
⋄ =

��Tk ,ν̃ − Tk ,µ
��
⋄ . (A.8)

Denote Xi ,U = tr( |i 〉〈i |U∆U †), where ∆ = ρ − σ for two quantum states ρ,σ ∈
D(Hd) which we wish to compare. Using Berger’s inequality (cf. Lemma 4)
for every summand in the expression for the TV distance TV(pρ,U , pσ,U ), where
U ∼ ν we get

Å
U∼ν

|Xi ,U | ≥

(
Å

U∼ν
X 2

i ,U

)3/2

(
Å

U∼ν
X 4

i ,U

)1/2 . (A.9)

Our goal is to compare the right-hand side of the above expression with its

counterpart evaluated using the Haar measure µ i.e. :

(
Å

U∼µ
X 2

i ,U

) 3

2
(
Å

U∼µ
X 4

i ,U

)− 1

2

.

We begin with the lower bound for the numerator of (A.9).

Å
U∼ν

X 2

i ,U ≥ Å
U∼µ

X 2

i ,U −
��tr(T2,µ − T2,ν̃) [|i 〉〈i |⊗2]∆⊗2��

≥ 1

d (d + 1)
tr(∆⊗2) −

��tr(T2,µ − T2,ν̃) [|i 〉〈i |⊗2]
��
1
‖∆‖2∞

≥ 1

d (d + 1)
tr(∆⊗2) − δ ‖∆‖2∞

≥ 1

d (d + 1)
tr(∆⊗2) (1 − d (d + 1)δ).

(A.10)

where we used standard inequalities | tr(AB) | ≤ | |A | |1 | |B | |∞, | |A| |1 ≤ | |A| |⋄,
| |A | |2∞ ≤ | |A | |2HS, the definition of the diamond norm and (A.7).
Next, we bound denominator from above using Lemma 4 and reasoning anal-

ogous as before

Å
U∼ν

X 4

i ,U ≤ Å
U∼µ

X 4

i ,U +
��tr(T4,µ − T4,ν̃) [|i 〉〈i |⊗4]∆⊗4��

≤ C

(
Å

U∼µ
X 2

i ,U

)2
+ δ ‖∆‖4∞

≤ C
tr(∆2)2

(d (d + 1))2

(
1 +

(d (d + 1))4δ

C

)
,

(A.11)

with C = 10.1.
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Combining above inequalities, we obtain that for δ approximate 4-desing, we
have

(
Å

U∼ν
X 2

i ,U

)3/2

(
Å

U∼ν
X 4

i ,U

)1/2 ≥ ℓ̃ (δ)

(
Å

U∼µ
X 2

i ,U

)3/2

(
Å

U∼µ
X 4

i ,U

)1/2 (A.12)

with

ℓ̃ (δ) =
(1 − d (d + 1)δ)3/2

(
1 +

δ (d (d+1))2

C

)1/2 ≥ (1 − 2d 2δ)3/2

(
1 + 4d 4δ

C

)1/2 ≥ (1 − 2d 2δ)3/2

(
1 + 2d 4δ

)1/2 (A.13)

where we used the fact that x (x + 1) ≤ 2x 2 and x 2(x + 1)2 ≤ 4x 4 for any x ≥ 1,
and 2

C
=

2

10.1
< 1.

By setting δ =
δ ′

2d 4
, we obtain

l̃ (δ′) ≥

s
(1 − δ ′

d 2
)3

1 + δ′
C ℓ (δ′) . (A.14)

Using analogous reasoning for bounding Å
U∼ν

X 2

i ,U
from above, we obtain upper

bound

Å
U∼ν

|Xi ,U | ≤ ũ (δ) Å
U∼µ

|Xi ,U | , (A.15)

with

ũ (δ) = (1 + d (d + 1)δ)1/2 ≤ (1 + 2δd 2)1/2 = (1 +
δ′

d 2
)1/2 C u (δ′), (A.16)

where we used the fact that x (x + 1) ≤ 2x 2 for any x ≥ 1. This concludes the
proof for quantum states.
For quantummeasurements, we follow the analogous technique of proof. For

POVMs M and N, each ∆i = Mi − N i will play a role of previous ∆. The only
difference will be that the second moment is equal to

Å
U∼ν

X 2

i ,U =
1

d (d + 1)
(tr(∆i )

2 + tr(∆2

i )), (A.17)

because operators ∆i are generally not traceless.
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A.2.2 Quantum channels

Let us now proceed to the proof of Theorem 3 for channels. Denote Xi ,V ,U =

tr( |i 〉〈i |U∆(Vψ0V
†)U †) where ∆ = Λ − Γ with two quantum channels Λ,Γ ∈

CPTP(Hd) that we are comparing. From the reasoning given in the preceding
section (i.e. the proof of Theorem 1 for approximate 4-designs) we have that for
δ = δ′/(2d 4)

ℓ (δ′)
a

2
‖∆[ψV ]‖HS ≤ Å

U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) ≤ u (δ′)

A

2
‖∆[ψV ]‖HS . (A.18)

Wewill use the above bounds together with Jensen’s and Berger’s inequality (ap-
plied for the functionYV B ‖∆[ψV ]‖HS andV ∼ ν) to establish the desired result.
We start by re-expressing the second and fourth moment ofYV in a convenient
form :

Å
V∼ν

Y 2

V = Å
V∼ν
tr
(
Ó∆⊗2[ψ⊗2

V
]
)
= 2 tr

(
Ð
(2)
sym∆

⊗2[T2,ν (ψ
⊗2
0

)]
)
, (A.19)

Å
V∼ν

Y 4

V = Å
V∼ν
tr
(
Ó∆⊗2[ψ⊗2

V
]
)2

= 4 tr
(
Ð
(2)
sym ⊗ Ð

(2)
sym∆

⊗4[T4,ν (ψ
⊗4
0

)]
)
, (A.20)

where we have used the ’swap trick’: tr(AB) = tr(A ⊗ BÓ), and the fact that
tr(∆[ψV ]) = 0. We start by using Eq. (A.19) to derive an upper bound on Å

V∼ν
Y 2

V
.

From above for δ-approximate 4-design ν

Å
V∼ν

Y 2

V ≤ Å
V∼µ

Y 2

V + 2

���tr
(
Ð
(2)
sym∆

⊗2[(T2,ν − T2,µ) (ψ
⊗2
0

)]
)��� (A.21)

= Å
V∼µ

Y 2

V + 2

���tr
(
(∆†)⊗2

h
Ð
(2)
sym

i
(T2,ν − T2,µ) (ψ

⊗2
0

)
)��� (A.22)

≤ Å
V∼µ

Y 2

V + 2

���(∆†)⊗2
h
Ð
(2)
sym

i���
∞
δ , (A.23)

where we have used the definition of the dual of a super operator and utilized
that δ-approximate 4-design ν is also δ-approximate 2-design. We proceed

with bounding the operator norm of (∆†)⊗2
h
Ð
(2)
sym

i
in terms of HS norm of the

Jamiołkowski-Choi state J∆:

���(∆†)⊗2
h
Ð
(2)
sym

i���
∞
=

(
d + 1

2

) ����(∆
†)⊗2

[
Å

U∼µ
ψ⊗2
U

]����
∞
≤ (A.24)

≤
(
d + 1

2

)
max

ψ∈S(H)

��(∆†)⊗2
[
ψ⊗2]��

∞ =

(
d + 1

2

) (
max

ψ,φ∈S(H)
tr(φ∆(ψ))

)2
.

(A.25)

The result of double maximization can be upper bounded as follows:

max
ψ,φ∈S(Hd)

tr(φ∆(ψ)) = max
ψ,φ∈S(Hd)

d tr(J∆φ ⊗ ψT ) ≤ d ‖J∆‖HS . (A.26)
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Inserting this to (A.23) and recalling that Å
V∼µ

Y 2

V
= (Ach)2(‖J∆‖2HS + tr(∆(τd)

2)

with Ach = d
d+1
(cf. Eq. (A.18)) we get:

Å
V∼ν

Y 2

V ≤ (Ach)2(‖J∆‖2HS+tr(∆(τd)
2)+d 5(d+1)‖J∆‖2HSδ ≤ Å

V∼µ
Y 2

V

(
1 +

d 5(d + 1)

(Ach)2
δ

)
.

(A.27)
Integrating both sides of the upper bound in Eq. (A.18) , using Jensen’s inequal-

ity, and noting that 1
2

r
Å

V∼µ
Y 2

V
= dchav (Λ,Γ ) yields

Å
V∼ν

Å
U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) ≤ u (2d 4 δ)

s
1 +

d 5(d + 1)

(Ach)2
δ
Ach

2

r
Å

V∼µ
Y 2

V
, (A.28)

= u (2d 4 δ)
p
1 + d 3(d + 1)3δ Achdchav (Λ,Γ ) , (A.29)

= ũch(δ) Achdchav (Λ,Γ ) , (A.30)

where we defined

ũch(δ) B u (2d 4 δ)
p
1 + d 3(d + 1)3δ ≤ u (2d 4 δ)

p
1 + 8d 6δ . (A.31)

where in second step we used inequality (x + a) ≤ x (1 + a) for x , a ≥ 1,
To get the lower bound, we will integrate LHS of Eq. (A.18) and apply berger

inequality. Proceeding analogously as before we obtain

Å
V∼ν

Y 2

V ≥ Å
V∼µ

Y 2

V − 2

���(∆†)⊗2
h
Ð
(2)
sym

i���
∞
δ ≥ Å

V∼µ
Y 2

V (1 − d 3(d + 1)3δ) . (A.32)

Å
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Y 4

V ≤ Å
V∼µ

Y 4

V + 4

���(∆†)⊗2
h
Ð
(2)
sym

i���2
∞
δ ≤ Å

V∼µ
Y 4

V + d 4(d + 1)4‖J∆‖4HSδ (A.33)

We now recall that fourth moment w.r.p. to Haar measure is bounded by (see
Eq. (3.39))

Å
V∼µ

Y 4

V ≤ v ·

(
Å

V∼µ
Y 2

V

)2
= v · (Ach)4 (2dchav (Λ,Γ ))

4
, (A.34)

withv =

13

6 (
d+1
2 )

2

(d+34 )
, wherewe used the fact that Å

V∼µ
Y 2

V
= (Ach)2 (‖J∆‖2HS+tr(∆(τd)

2) =

(Ach)2 (2dchav (Λ,Γ ))
2.

We now note that ‖J∆‖4HS ≤
(
‖J∆‖2HS + tr

(
∆ (τd)

2

))2
= (2dchav (Λ,Γ ))

4, and

combine it with Eq. (A.34) and Eq. (A.33) to obtain

Å
V∼ν

Y 4

V ≤ v (Ach)4 (2dchav (Λ,Γ ))
4

(
1 − δ

d 4(d + 1)4

v (Ach)4

)
(A.35)

= v (Ach)4 (2dchav (Λ,Γ ))
4

(
1 + δ

(d + 1)7(d + 2) (d + 3)

13d

)
. (A.36)
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Similarly, we get

Å
V∼ν

Y 2

V ≥ (Ach)2 (2dchav (Λ,Γ ))
2

(
1 − δ d 3(d + 1)3

)
(A.37)

Inserting the above to Berger’s inequality yields

(
Å

V∼ν
Y 2

V

)3/2

(
Å

V∼ν
Y 4

V

)1/2 ≥ 2 b̃d d
ch
av (Λ,Γ )

(
1 − δ d 3(d + 1)3

)3/2
(
1 + δ

(d+1)7 (d+2) (d+3)
13d ,

)1/2 (A.38)

where b̃d =
d

d+1

q
(d+2) (d+3)
13d (d+1)

.

Now we integrate Eq. (A.18) and combine with the above to obtain

Å
U∼ν
TV(pΛ,ψV ,U , pΓ ,ψV ,U ) ≥ ach dchav (Λ,Γ ) l̃

ch(δ) , (A.39)

where

l̃ ch(δ) = ℓ (2d 4 δ)

(
1 − δ d 3(d + 1)3

)3/2
(
1 + δ

(d+1)7 (d+2) (d+3)
13d ,

)1/2 (A.40)

≥ ℓ (2d 4 δ)

(
1 − δ 8 d 6

)3/2

(
1 + δ d 8·27·12
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)1/2 (A.41)

≥ ℓ (2d 4 δ)

(
1 − δ 2

8 d 6
)3/2

(
1 + δ (2d )8

)1/2 , (A.42)

where we used inequality (x + a) ≤ x (1 + a) for x , a ≥ 1.
Now we set δ B δ ′

(2d )8
and get

l̃ ch(δ′) ≥ ℓ (
δ′

27d 4
)

(
1 − δ ′

d 2

)3/2

(1 + δ′)1/2
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(
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d 2

)3/2

(1 + δ′)1/2
≥
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1 − δ ′

d 2

)3

1 + δ′
C ℓch(δ′) ,

(A.43)

where in second inequality we used the fact that ℓ (x ) is a decreasing function
of x ≥ 0.
With set δ , we also rewrite upper bound from Eq. (A.31) as

ũch(δ′) ≤ u (
δ′

27d 4
)

r
1 +

δ′

25d 2
≤ u (δ)

r
1 +

δ′

d 2
≤ 1 +

δ′

d 2
C uch(δ′) , (A.44)

where we used the fact that u (x ) is an increasing function of x ≥ 0.



B. Modeling and mitigation of correlated readout noise

We collect here technical results that are used in the Chapter 4. Some of the
results stated here can be of independent interest for further works on quan-
tum error mitigation. In Appendix B.1 we discuss the details of error mitigation
on marginals for correlated readout noise models, while Appendix B.2 provides
details of our noise characterization procedure based on the Diagonal Detector
Overlapping Tomography technique. In Appendix B.3 we give a short overview
of the whole noise characterization scheme in a step-by-step manner. Results
concerning the sample complexity of energy estimation are discussed in Ap-
pendix B.4, and finally, in Appendix B.5 we provide some additional experimen-
tal data and details of the numerical simulations.

B.1 Correlated readout noisemodel and its usage for error-mitigation
on marginals

In this section, we provide some details on how correlated measurement noise
affects marginal probability distributions. We start by providing in Appendix B.1.1
explicit relation between ideal and noisy marginals, when the global probabil-
ity distribution is affected by readout noise given by our model. Then in Ap-
pendix B.1.2, we discuss the error-mitigation on the level of marginals, includ-
ing proof of Proposition I from the main text. We finish by analyzing errors in
simultaneous estimation of multiple marginal distributions (Appendix B.1.3) and
estimation of multiple expected values of local terms (Appendix B.1.4).

B.1.1 Noise model for marginal distributions

In this subsection, we show how to translate a noise model for the full probability
distribution given in Eq. (4.3) into a simple noise model for marginal distributions.
Our results can be summarised in the following Proposition 3.

Proposition 3. Let p (Y1Y2 . . . ,YN ) and p̃ (X1X2, . . . ,XN ) be the ideal distribution
and the one obtained on noisy detector respectively. Define by p (YS ) and p̃ (XS)
their corresponding marginal distributions for qubits in some subset S. If the full
distributions are connected by a stochastic matrix of the form Eq. (4.3) bymeans
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of

p̃ (X1 . . .XN ) =
Õ

Y1Y2...YN

p (Y1Y2 . . .YN ) TX1X2...XN |Y1Y2...YN
, (B.1)

then there exists a left-stochastic matrix T(S) that connects the noisy marginal
to the ideal one, namely

p̃ (XS) =
Õ
YS

T(S)
XS |YS

p (YS) . (B.2)

Moreover, the form of the marginal noise matrix can be explicitly derived from
the decomposition Eq. (4.3).

We will now proceed to prove the above Proposition by deriving the concrete
expression of T(S)

XS |YS
as a function of the matrices in the given noise model. Let

us start by computing the marginal of the noisy distribution on general S. Let
us denote by C (S) =

{
Cχ

}
χ
set of clusters which contain qubits from S (note

that we might be interested in taking marginal over some qubits from clusters
to which qubits from S belong), and by L (S) = {χ}χ the corresponding set of
labels of those clusters. Following from Eq. (B.1) with global noise noise map
given by Eq. (4.3) we have

p̃ (XS) =
Õ
X <XS

p̃ (X1X2 . . .XN )

=

Õ
X ∈C (S)
X <XS

Õ
X <C (S)

Õ
Y1Y2...YN

p (Y1Y2 . . .YN )
Ö
χ

T
YNχ
XCχ |YCχ |

=

=

Õ
X ∈C (S)
X <XS

Õ
Y1Y2...YN

p (Y1Y2 . . .YN )
Ö

χ∈L (S)
T
YNχ
XCχ |YCχ |

Ö
χ<L (S)

Õ
X <C (S)

T
YNχ
XCχ |YCχ

=

=

Õ
X ∈C (S)
X <XS

Õ
Y1Y2...YN

p (Y1Y2 . . .YN )
Ö

χ∈L (S)
T
YNχ
XCχ |YCχ |

,=

=

Õ
X ∈C (S)
X <XS

Õ
Y ∈YN(S)∪C (S)

p
(
YN(S)∪C (S)

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ |

,

where to obtain the above simplifications, we have exploited the fact that the
noisematricesTYNχ are all left-stochastic (for any fixedYNχ ) andwe have defined
p
(
YN(S)∪C (S)

)
as the marginal of the ideal distribution on the qubits belonging

both the clusters and the neighborhoods of qubits from S. By N (S) we denote
set of qubits from neighbourhoods of clusters C (S) but without including the
qubits from S, i.e., N (S) = ∪χ∈L (S)

(
Nχ/S

)
. Note that this additional requirement

is necessary since qubits which are neighbors of some clusters in C (S) might
belong to some other clusters in C (S).
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Now by means of the chain rule for probability we decompose

p
(
YN(S)∪C (S)

)
= p (YS) p

(
Y{N(S)∪C (S)}/{S} |YS

)
(B.3)

which after substituting to the Eq. (B.3) gives

p̃ (XS) =
Õ
Y ∈YS

p (YS)
Õ

X ∈C (S)
X <XS

Õ
Y ∈YN(S)∪C (S)

Y <YS

p
(
Y{N(S)∪C (S)}/{S} |YS

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ |

.

(B.4)

Now notice that Eq. (B.4) coincides exactly with Eq. (B.2) if we identify the
marginal noise matrix elements as

T(S)
XS |YS

B

Õ
X ∈C (S)
X <XS

Õ
Y ∈YN(S)∪C (S)

Y <YS

p
(
Y{N(S)∪C(S)}/{S} |YS

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ |

, (B.5)

which shows, unsurprisingly, that the noise matrix acting on the marginal is state-
dependent (viamarginal distribution p

(
Y{N(S)∪C(S)}/{S} |YS

)
). Note that the above

equation does not include simplematrixmultiplication of noisematrices for neigh-
borhoodsN (S). In other words, the genericmarginal noisematrix is not a convex
combination of the matrices from the set

∪χ∈L (S)
{
TYNχ

}
YNχ

(B.6)

even if the neighborhoods do not overlap.
It is now left to show that the matrix defined in Eq. (B.5) is left-stochastic. To

this aim, let us sum over string XS and obtainÕ
XS

T(S)
XS |YS

B

Õ
XS

Õ
X ∈C (S)
X <XS

Õ
Y ∈YN(S)∪C (S)

Y <YS

p
(
Y{N(S)∪C (S)}/{S} |YS

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ

=

=

Õ
Y ∈YN(S)∪C (S)

Y <YS

p
(
Y{N(S)∪C (S)}/{S} |YS

) Õ
XS

Ö
χ∈L (S)

T
YNχ
XCχ |YCχ

=

=

Õ
Y ∈YN(S)∪C (S)

Y <YS

p
(
Y{N(S)∪C (S)}/{S} |YS

)
= 1 ,

where we simply used the fact that the cluster noise matrices are left-stochastic
and that the conditional distribution p

(
Y{N(S)∪C (S)}/{S} |YS

)
is normalised.

B.1.2 Noise mitigation for marginal distributions – proof of Proposition 1

Here we analyze in detail the noise mitigation strategy outlined in the main text,
focusing on its scalability and effectiveness to recover the ideal marginal distri-
bution. Again let us assume that we are interested in marginal on qubits from
some subset S.
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Let us start by outlining the reasoning behind our choice of the mitigation
strategy. Recall that, as proved in the previous section, the noisy marginals
can always be related to ideal ones by means of a marginal stochastic matrix
as for Eq. (B.2). Hence, taking the inverse of the marginal noise matrix would the
natural strategy for correct noise mitigation. However, recall that, as shown in
Eq. (B.5), the form of the marginal noise matrix depends on the ideal distribution
itself, which is generally unknown. Therefore one needs an ansatz for such a
distribution, which hopefully will work in the mitigation generic case of arbitrary
conditional distribution. As indicated in the main text, the natural choice for such
ansatz is a uniform distribution (inserted in place of p

(
Y{N(S)∪C(S)}\{S} |YS

)
in

Eq. (B.5)).
Now, let us make the following important observation. We are interested in

mitigation of the noise of a |S|-qubit marginal distribution of qubits generally
belonging to some set of distinct clustersC (S). Note that, by definition, a cluster
is a set of qubits with correlations in errors so big, that one can not consider the
measurement outcomes on them separately. We argue that, if one is interested
in correcting the marginal distribution of only parts of the clusters, say p̃ (XS), it
is still a better idea first correct the marginal distribution on the whole variables
in clusters, namely

p̃ (XC (S)) =
Õ
YC (S)

p (YC (S)) T
(C (S))

XC (S) |YC (S)
. (B.7)

Notice that the corrected clustermarginal distribution can always be post-processed
to obtain the two-body marginal distribution of interest. By proceeding in a sim-
ilar manner as in the previous section, one can obtain the following expression
for the cluster noise matrix

T(C (S))

XC (S) |YC (S)
=

Õ
YN(S)

p
(
YN(S) |YC(S)

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ

, (B.8)

where L (S) is a set of labels of the clusters C (S) (note that those are also la-
bels for neighbours of those clusters). Recall that N (S) was defined as set of
qubits from neighbourhoods of clusters C (S) but without including the qubits
from S, i.e., N (S) = ∪χ∈L (S)

(
Nχ \ S

)
, so in the above definition we do not av-

erage over some qubits in clusters. As mentioned before, since the exact form
of such a matrix requires access to the unknown information of p

(
YN(S) |YC(S)

)
,

we propose instead to invert the average cluster matrix

TC (S)
av B

1

2|N(S)|

Õ
YN(S)

TYN(S) , (B.9)

and use it to perform the error mitigation. From our numerical analysis, the re-
placement of the cluster noise matrix with its average version yields a much
better correction than making a similar replacement at the level of the |S|-body
marginals (however we tested in only for the case of 2-qubit marginal distribu-
tions). This provides a clear indication in favor of performing the error mitigation
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at the level of the clusters instead of the single variables. Moreover, notice that
the computational cost of computing the two noise matrices in Eq. (B.8) and
(B.5) is comparable. Indeed, both require access to the collections of matrices{
TYN(S)

}
YN(S)
. Hence, as long as the size of the involved clusters and neighbor-

hoods is reasonably small (particularly, it does not scale with the system size),
computing the matrix in Eq. (B.9) is efficient.
Due to the above, the following discussion will concern the mitigation on the

level of marginals on the level of clusters C (S). For clarity, let us from now on
use slightly changed notation

S → S = ∪χCχ , (B.10)

to indicate that we are interested in error-mitigation on the subset of qubits S
which consists of full clusters, i.e., prior to performing error-mitigation we do
not wish to take marginal over qubits belonging to the same cluster (while later
one can of course marginalize the corrected distributions).
Having obtained TSav , one can use its inverse as a correction matrix which can

reduce the noise on the marginal distribution, by defining the corrected distribu-
tion as

pcorrS =

(
TSav

)−1
p̃S , (B.11)

where we used vector notation for clarity. p̃S is noisy distribution on qubits from
S. Similarly, the vector without tilde symbol pS will denote corresponding ideal
distribution, i.e., we have p̃S = T(S)pS. Error reduction via average matrix is per-
fect only in the case 1 of infinite-statistics and under the assumption that the
actual conditional distribution in Eq. (B.8) is uniform (because then TS = TSav ).
Since this scenario is not realistic, in practice one can hope only for partial noise
mitigation, and not its complete reverse. The errors related to statistical noise
when correcting probability distribution were thoroughly analyzed in work [42]
(we also repeat a similar analysis in the context of expected values of Hamiltoni-
ans in next sections). Here we will analyze the errors which arise due to the fact
that we use the inverse of the average cluster matrix T(S)av instead of inverse of
the exact matrix T(S) , while keeping the assumption of infinite statistics. We will

denote effective correction matrix as A(S)av B

(
T(S)av

)−1
(as in Eq. (4.9)).

To quantify the errors, wemake use the Total-Variation-Distance (see Eq. (B.56))
to measure the distance between probability distributions. For later purposes, let
us also recall that the operator norm induced by the vector L1 norm is

| |A | |1→1 = sup
| | |v 〉 | |1=1

| |A |v 〉 | |1, (B.12)

where A is any linear operator acting on given vector space.

1Clearly, the implicit assumption is that our model of noise is exact.
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Now we will proceed to proving Proposition 1 which states that the maximum
error due to using average correction matrix is given by

TVD
(
pcorrS , p

S
)
≤ 1

2
| |ASav | |1→1max

YN(S)

| |TSav − TYN(S) | |1→1 , (B.13)

As a starting point for the proof, let us make following decomposition T(S) =

T(S)av +
(
T(S) − T(S)av

)
so to replace the left-hand-side of Eq. (B.13) with

| |A(S)av

(
T(S)p̃S

)
− pS |1 = | |A(S)av

(
T(S) − T(S)av

)
pS | |1

≤ sup
pS

| |A(S)av

(
T(S) − T(S)av

)
pS | |1

≤ | |A(S)av | |1→1 | |T
(S) − T(S)av | |1→1 , (B.14)

where the first inequality indicates the maximization over all possible probability
distributions over the set S variables and the second inequality follows from
Eq. (B.12) and the sub-multiplicativity of the L1 norm. Now, let us bound the
second term of the above equation as follows

| |T(S) − T(S)av | |1→1 = | |
©�
«
Õ
YN(S)

p
(
YN(S) |YS

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ

ª®
¬
− T(S)av | |1→1

≤ sup
{p (YN(S) |YS)}

| |
©�
«
Õ
YN(S)

p
(
YN(S) |YS

) Ö
χ∈L (S)

T
YNχ
XCχ |YCχ

ª®
¬
− T(S)av | |1→1 ,

(B.15)

where the above sequence of inequalities removes the dependence on the un-
known conditional distribution p

(
YN(S) |YS

)
.

The maximization in Eq. (B.15) corresponds to the maximal distance of the
average matrix T(S)av from the convex hull of the set of matrices

{
TYN(S)

}
YN(S)

(hence over a polytope with extremal points being each of the matrices TYN(S) ). It
is straightforward to see that this function is convex, due to the triangle inequality
and absolute homogeneity of the L1 norm. From this fact, it follows that the
maximum in Eq. (B.15) is attained for one of the extremal points of the convex
hull, i.e., a particular TYNi TYN(S) . Hence, combining this last boundwith Eq. (B.14)
one obtains exactly Eq. (B.13), which proves Proposition 1.

B.1.3 Statistical error bounds

The idea behind the energy estimation routine in variational algorithms such as
QAOA is to estimate Hamiltonian with K-terms by estimating those terms sepa-
rately and then adding them up. However, if one provides statistical error bounds
for each of those terms, one needs to take into account the probabilistic nature
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of such bounds. Let us say that we want to estimate some distribution p with
N outcomes by sampling from it s number of times. It is well known [196] that
the probability of estimated distribution being ǫ-close to the true distribution p
in terms of TVD (Eq. (4.7) is vanishing exponentially in number of sample

Pr
(
TVD

(
p, pest

)
≥ ǫ

)
≤ (2n − 2) exp

(
−2sǫ2

)
. (B.16)

Now it is often convenient to set the probability fixed and consider the confi-
dence intervals, i.e., the bound for TVD

(
p, pest

)
. Then we can rewrite the above

equation as a function ǫ∗
(
n, s, P1,err, 1

)
of three fixed parameters – number of

outcomes n , number of samples s and probability of the upper bound being in-
correct P1,err. Then the basic manipulations of Eq.(B.16) give

TVD
(
p, pest

)
≤ ǫ∗

(
n, s, P1,err, 1

)
=

s
log (2n − 2) − log

(
P1,err

)

2s
. (B.17)

However, since in estimation of the K-term Hamiltonian one combines the up-
per bounds of the form (B.17) for particular terms into upper bound ǫ∗

(
n, s, P1,err,K

)

for the whole Hamiltonian, one needs to make sure that all upper bounds for par-
ticular terms are true at the same time with the desired probability. The union
bound states that the probability of at least one event from some set occurring
is no greater than the sum of probabilities of particular events. In our case, the
interesting set consists of events of the type “one of the bounds of type (B.17) is
not satisfied”. Hence the probability of at least one bound being wrong is upper
bounded by

PK ,err ≤ KP1,err . (B.18)

Therefore, if we wish to ensure that probability of all the bounds being right at
the same time is fixed and equal to P1,err for fixed number of samples s , we need
to effectively increase the upper bound to

ǫ∗
(
n, s, P1,err,K

)
=

=

vt
log (2n − 2) − log

(
P1,err
K

)

2s
=

=

s
log (2n − 2) − log

(
P1,err

)
+ log (K )

2s

with additional term logK under the square root. In other words, we effectively
lower the probability of error occurring in estimation of particular marginal dis-
tributions by a factor of K , which ensures that simultaneous estimation of K
marginal distributions has the precision from Eq. (B.19) with probability not lower
than the initial P1,err (by the virtue of union bound).
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It is instructive to look at this from the perspective of sampling complexity.
Let’s say that we would like to increase number of samples

s → s̃ C s (1 + foh)

in such a way, that upper bound remains fixed, i.e.,

ǫ∗
(
n, s̃, P1,err,K

)
= ǫ∗

(
n, s, P1,err, 1

)
.

Simple calculations show that in this case we would need to (multiplicatively)
increase the number of samples s by the overhead equal to

1 + foh = 1 + C log (K )

where parameter C is equal to

(
log

(
2
n − 2

P1,err

))−1
. (B.19)

Hence we see that for fixed dimension (fixed number of outcomes) simultaneous
estimation of K Hamiltonian terms leads to sampling overhead logarithmic in K .
Note that if one fixes the initial sampling size s , probability of error P1,err and

number of simultaneously estimated marginals K , the sampling overhead is, per-
haps counterintuitively, decaying in the number of outcomes. This dependence
is roughly linear in the number of outcomes, hence it is exponential in the number
of qubits.

B.1.4 Proofs of energy error bounds

Here we will provide proofs of worst-case error bounds for energy estimation
given in the main text. Note that in the following discussion, for clarity of nota-
tion we won’t add a special index to marginal probability distributions indicating
that they are marginals. This should be clear from the context. On the contrary,
local Hamiltonian terms, noise matrices, and correction matrices will have an
additional label (α) indicating their locality.

Approximation errors

We will start by providing proof of Eq. (4.19) which gives additive bound for
possible deviations of error-mitigated energy from ideal one when the source of
deviations is an approximation used in constructing noisemodel (recall Eq. (4.8)).
Consider estimation of the local term of Hamiltonian Hα . Recall that locality of
the terms means that Hα acts non-trivially only on the subset of qubits. Now let
us denote by p the marginal probability distribution on the qubits belonging to
the relevant subset. Then expected value of the local term can be written as

〈Hα 〉 =
Õ
t

Tαt pt = 〈Tα |p〉, (B.20)
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where by Tα we denoted vector of eigenvalues of local term Hα , and we used
convenient braket notation to denote scalar product. For example, if Hα = σz ⊗
σz , then Tα = (1,−1,−1, 1). Now we want to consider two different estimators
of the same local term – one from ideal distribution pideal and second from the
error-mitigated noisy distribution pcorr = Cavp

noi s y (recall Proposition 1). Now
we want to upper bound the difference between energy estimators based on
those two marginal distributions. From Eq. (B.20) we can write

|
〈
H corrα

〉
−
〈
H idealα

〉
| = | 〈T|

(��pcorr
〉
−
��pideal

〉)
| ≤ max

t
|Tt ||    {z    }

| |Hα | |

〈É| |
(��pcorr

〉
−
��pideal

〉)
||                    {z                    }

2TVD(pcorr,pideal)

≤ 2| |Hα | |δα ,

(B.21)

where δα is approximation error defined in Eq. (4.15), 〈É| is a vector of ones and
the last inequality follows from Lemma 1. Factor two comes from the fact that
Total-Variation Distance is defined with 1

2
factor. The additive error bound from

Eq. (4.19) is just a multiple application of triangle inequality

|
〈
Hcorr

〉
− 〈H 〉 | = |

Õ
α

〈
H corrα

〉
−
〈
H idealα

〉
| ≤

Õ
α

|
〈
H corrα

〉
−
〈
H idealα

〉
| ≤ 2

Õ
α

δα | |Hα | | .

(B.22)

Statistical errors

Now we will proceed to prove Eq. (4.19) which bounds the effects of statistical
noise on the error-mitigation. First, let us assume that the noise matrix acting
on the marginal of interest is known exactly (not approximately as in the above
derivations). In that case, in the lack of presence of the statistical errors, the
correction is done exactly. However, in reality the statistics are finite, and the
estimator of the noisy marginal distribution pnoi s y from which we sample on im-
perfect detector can be formally written as

pnoi s y|{z}
true

→ pnoi s y +|    {z    }
est imat ed

. (B.23)

Nowwewant to bound the error in the energy estimated after acting by correction
matrix T−1α on the estimated distribution above. In analogy to Eq. (B.21) we can
write

|H
corr, est
α −

〈
H idealα

〉
| = | 〈T|

©����
«
T−1α

��pnoi s y
〉

|        {z        }
|pideal〉

+T−1α |〉 −
��pideal

〉
ª®®®®
¬
| = |〈T|T−1α |〉〉 | ≤

(B.24)

≤ | |Hα | | | 〈É| T−1α |〉 | ≤ | |Hα | | | |T
−1
α | |1→1 | | |〉 | |1 ≤ (B.25)

≤ 2| |Hα | | | |T
−1
α | |1→1ǫ

∗
, (B.26)
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where first inequality follows from definition of operator norm, second inequality
follows from a definition of any induced operator norm and the last inequality
follows from analysis in previous section with ǫ∗ being bound given by Eq. (B.19).
In analogy to Eq. (B.22) by applying multiple times triangle inequality we obtain
Eq. (4.19).

Approximation and statistical errors

Now we will combine two previous bounds by using a triangle inequality. Let
us denote by pnoisy, est the estimator of noisy probability distribution pnoisy on the
marginal α (hence the RHS of Eq. (B.23)), and by C α

av the average correction
matrix used to correct that marginal. We want to bound the distance between
corrected estimator of noisy distribution C α

avp
noisy, est and the ideal distribution

pideal. For particular marginal we have triangle inequality for Total-Variation Dis-
tance

TVD
(
C α

avp
noisy, est

, pideal
)
≤ TVD

(
Cavp

noisy
,Cavp

noisy, est
)

|                                  {z                                  }
≤2| |Cav | |1→1ǫ∗

+TVD
(
Cavp

noisy
, pideal

)

|                        {z                        }
2δal pha

(B.27)

≤ 2| |C α
av | |1→1ǫ

∗ + 2δα , (B.28)

where ǫ∗ is statistical bound given by Eq. (B.19), and δα is approximation error
defined in Eq. (4.15). First underlined inequality follows from properties of in-
duced operator norm and from statistical errors bound proved in the previous
section (this step is analogous to the one in the second line of Eq. (B.24)). The
second underlined inequality follows from Proposition 1. To translate the above
result to expected values of local Hamiltonian one just repeats the reasoning
given in proofs of Eq. (B.22) and Eq. (B.24) for marginal distributions of the form
C α

avp
noisy, est for which we have bounds of the form given by Eq. (B.27).
To finish this section, let us note that the reasoning presented in this section

is analogous to the one given in Ref. [42] where analysis of effects of statisti-
cal noise and non-classical noise on the error-mitigation performed on global
distributions was presented.

B.2 Details of Diagonal Detector Overlapping Tomography

In this section, we give more details regarding our noise characterization proce-
dure using DDOT.We start by providing efficient way of construction of DDOT cir-
cuits in Section. B.2.1. In Appendix B.2.2 we show how to use results of DDOT to
infer the correlations structure of readout noise in a device. Then we discuss the
construction of Diagonal Detector Overlapping Tomography circuits which are
balanced (Appendix B.2.3) and perfect (Appendix B.2.4), together with proofs
fro scaling of required number of random circuits. In Appendix B.2.5, we dis-
cuss heuristic procedures of making DDOT circuits more balanced. Finally, in
Appendix B.2.6 we explain the effect of overestimating correlations which can
happen if the implemented DDOT collection is not balanced.
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B.2.1 Construction of Diagonal Detector Overlapping Tomography circuits

Here we will present in detail our building block for efficient characterization of
correlations in a measurement device: Diagonal Detector Overlapping Tomog-
raphy (DDOT). In analogy to Quantum Overlapping Tomography (QOT) [151], a
collection of (N , k ) DDOT circuits allows one to reconstruct the noise matrices
for the readout process of any group of k qubits in an N-qubit device.
More precisely, we define a (N , k ) perfect collection of DDOT circuits as a

collection of N-qubit quantum circuits constructed only from É andX gates, with
the property that for every subset of qubits of the size k , each of the computa-
tional basis states on that subset is prepared at least once. For example, we will
call a collection of circuits (N , 2) perfect if for all pairs of qubits, each of the states
from {|00〉 , |01〉 , |10〉 , |11〉} is prepared at least once in the whole collection.
One way to construct DDOT collection is to follow Ref. [151] and make use

of the notion of hash functions (here by a hash function we mean every func-
tion [N ] → [k ] with k < N ). To construct (N , k ) perfect collection of DDOT
circuits using hash functions one can use Algorithm 1, which encapsulates the
idea of Quantum Overlapping Tomography from Ref. [151] translated to the con-
struction of DDOT circuits. Specifically, this method corresponds to QOT with
two “bases” which are preparation of state |0〉 or |1〉. Each hash function as-
signs each qubit a label from [k ]. For a given function, qubits are assigned to
k disjoint batches based on the value of the function value. For fixed assign-
ment of batches, qubits belonging to a batch are initialized in the same state
(|0〉 or |1〉), independently from the qubits in other batches. In this way, 2k
circuits are specified, which independently implement all computational basis
states on all the batches. For example, in the case of k = 2 and N = 6 qubits,
some specific hash functions could result in initializing the following states –
{000000, 000111, 111000, 111111}, which implement all two-qubit computational
basis states on the pairs of qubits from left and right parts of the register (in this
example the two batches are {Q0,Q1,Q2} and {Q3,Q4,Q5}). The DDOT cir-
cuits collection constructed in this way is perfect if the underlying collection of
hash functions is perfect. This means that for each k-qubit subset in N-qubit
device, there exists at least one hash function in the collection which assigns
each qubit from that subset a distinct number from [k ]. Note that if a given
function is indeed injective on some k-qubit subset, this means that qubits from
those subsets belong to distinct batches and therefore all computational-basis
states will be implemented on them. Hence if this holds for all subsets, the col-
lection is perfect. In Algorithm 1 we generate random hash functions to create a
DDOT collection, therefore there is no deterministic guarantee that the collection
constructed in this way will indeed be perfect. However, it follows directly from
arguments in [151] (specifically, Section III) that if we use Algorithm 1 to gener-
ate DDOT collection, then if we wish the collection to be perfect with probability
at least 1 − δ , the needed number circuits κ is at least of the order

κ > (2e)k
(
log (N ) +

1

k
log

(
1

δ

))
, (B.29)
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see Appendix B.2.4 for detailed bounds.
On the other hand, one can also consider construction which uses random

circuits without referring to the notion of hash functions. Generation of random
bitstrings and using them as definitions of quantum circuits is used to construct
DDOT collection in Algorithm 2. Similarly to Algorithm 2, since we use random-
ness to generate the collection, there is no deterministic guarantee that the re-
sulting collection will be perfect. However, in Appendix B.2.4 we show that if we
wish the collection to be perfect with probability at least 1 − δ , then the needed
number of circuits κ is at least of the order

κ > 2
k

(
k log (2N ) + log

1

δ

)
, (B.30)

which looks similar to Eq. (B.29), however in practice exhibits better scaling
due to specific factors (see Appendix B.2.4 for more detailed bounds). Hencewe
expect that for higher system sizes the random circuits algorithm should perform
better in practice compared to the one which uses hash functions. Of course,
when the collection with desired properties has been constructed, it does not
matter what method was used to create it.
As mentioned in the main text, during the implementation of DDOT, different

circuits will in general be sampled a different number of times, this may cause
some correlations to be overestimated (this effect can be reduced by proper
post-processing of the data – see Appendix B.2.6). Hence it is beneficial for
the perfect collection of DDOT circuits to be approximately balanced. Here by
’balanced’ we mean that all k-qubit computational basis states are sampled the
same number of times, and by ’approximately balanced’ that they are sampled
approximately the same number of times (see related notion for hash functions,
for example in Ref [166]). For the construction using random circuits, we prove
in Appendix B.2.3 that one can expect that with high probability the collection
will also have this property with the required number of circuits scaling similarly
to Eq. (B.30).
To conclude, let us point out that for a given pair of numbers (N , k ) it suffices

to generate the DDOT collection only once, and it can be used in the design of fu-
ture experiments. We will make a number of pre-generated collections publicly
available in our GitHub repository QREM (Quantum Readout Errors Mitigation)
[197]. We note that the described techniques are suitable for noise characteri-
zation not only for the noise model we proposed but also for other models with
bounded locality of correlations, for example with two-qubit correlations con-
sidered in Ref. [120].

B.2.2 Inferring the structure of clusters and neighborhoods

After the implementation of a (N , k ) perfect collection of DDOT circuits, one has
potential access to a lot of information about the measurement noise in a de-
vice. Here we provide a method of using data from such implementation to infer
the correlations in measurement noise. As a starting point, let us note that one
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can use the output of the DDOT circuits to construct all the possible two-qubit
noise matrices TXiXj |YiYj

. In particular, whenever k ≥ 2, there are subsets of
circuits that implement all computational-basis states for each two-qubit sub-
system. This allows to gather all two-qubit marginal probability distributions of
the form

{
p
(
XiXj |YiYj

)}
i ,j

(B.31)

where Xi (Xj ) is the measured state of i th (j th) qubit, and theYi (Yj ) is the input
state of the corresponding qubit (i.e., the state that is supposed to be imple-
mented by the quantum circuit from the DDOT collection). In the following Ex-
ample 1 we give explicitly calculated single-qubit noise-matrices for exemplary
pair of qubits i = 1 and j = 2.

Example 1. For two-qubit set S = {1, 2}, assuming no dependence on the state
of neighbors, generic left-stochastic map acting on its detector has a form

TS =

©�����«

p (00|00) p (00|01) p (00|10) p (00|11)

p (01|00) p (01|01) p (01|10) p (01|11)

p (10|00) p (10|01) p (10|10) p (10|11)

p (11|00) p (11|01) p (11|10) p (11|11)

ª®®®®®
¬
. (B.32)

It follows that single-qubit noise matrices from Eq. (4.6) for first qubit have form

TY2=
′
0
′
=

1

2

 
p (00|00) + p (01|00) p (00|10) + p (01|10)

p (10|00) + p (11|00) p (10|10) + p (11|10)

!
, (B.33)

TY2=
′
1
′
=

1

2

 
p (00|01) + p (01|01) p (00|11) + p (01|11)

p (10|01) + p (11|01) p (10|11) + p (11|11)

!
(B.34)

(B.35)

while for second qubit they are

TY1=
′
0
′
=

1

2

 
p (00|00) + p (10|00) p (00|01) + p (10|01)

p (01|00) + p (11|00) p (01|01) + p (11|01)

!
, (B.36)

TY1=
′
1
′
=

1

2

 
p (00|10) + p (10|10) p (00|11) + p (10|11)

p (01|10) + p (11|10) p (01|11) + p (11|11)

!
. (B.37)

Note that the idea is to simply fix the state of ’neighbouring’ qubit to be either
′
0
′ or ′1′ and calculate according conditional marginals.
Now, we propose to use the information about the two-qubit noisematrices to

calculate the correlations (Eq. (4.6)) between a given pair of qubits. For the i-th
qubit, it’s the dependence from the j-th qubit can be calculated by constructing



B.2. Details of Diagonal Detector Overlapping Tomography 146

two single-qubit matrices on i-th qubit – the first one with the condition that j-th
qubit was initialized in |0〉 state, and the second in |1〉 state.
Those matrices can be used to calculate the parameter cj→i as the norm of a

difference of those matrices (Eq. (4.6)). We then propose to infer the structure
of the readout correlations according to the magnitude of the parameters cj→i

as follows. One specifies threshold parameters δclust and δneighb for the level of
correlations between qubits, and then assigns qubit j to the neighborhood or to
the cluster of qubit i , if the parameter cj→i is greater than the respective threshold.
In general, we advise to set those thresholds to be higher than the likely effects
of statistical deviations. We outline the whole procedure in Algorithm 3, which

takes as input the conditional single-qubit noise matrices
n
T
Yj

Q i

o
i,j
together with

a set of thresholds, and outputs the structure of the clusters and neighborhoods
in a device.
Finally, let us note that the above-described inference of correlations from

two-qubit marginal distributions works under the assumption that the correla-
tions do not vanish under taking marginals over other (than given pair) qubits.
This does not need to be true in practice, and one can consider generalizations
of Algorithm 3. The analogous set of single-qubit matrices depending on states
of t neighboring qubits would be created in a fully analogous manner to that
of Example 1 but now one would need to fix the state of t qubits. Note that if
one implemented DDOT (N , k ) collection, the data to create such matrices for
t = k −1 is available from the experiments. In the future, we intend to investigate
more elaborate methods of inferring correlations structure using DDOT, and we
will accordingly expand our repository [197].
Once a model for the above structure is obtained, one can use the rest of the

data obtained in the DDOT procedure to reconstruct the cluster noise matrices
as a function of the state of the neighbors and consequently construct a global
noise model (Eq. (4.3)), as well as the correction matrices for the marginals
(Eqs. (4.8),(4.9)). From the definition of a perfect (N , k ) collection, it follows that
one can reconstruct only cluster noisematrices involving a number t = |Cχ |+|Nχ |
of qubits which does not exceed k . If it happens that in fact t > k , we propose
to implement one of two following solutions:

1. Neglect correlations between some qubits in order to enforce that t = k .
For example, in Algorithm 3 if the number of qubits assigned to the neigh-
borhood of some cluster exceeds the limit, one could decide to not assign
to that neighborhood the qubits with the lowest values of cj→i parameters.
This will result in an imperfect model, whichmight nevertheless be accurate
enough for the purposes of error mitigation.

2. Refine the noise model by performing additional experiments of standard
Diagonal Detector Tomography on a chosen subset.

We note that for the refinement of the noise model, there also exists the al-
ternative possibility of constructing a restricted DDOT collection that implements
the characterization on a specific set of t-length subsets (as opposed to all such
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Algorithm 1 Generation of a perfect collection of (N , k ) DDOT quantum circuits
using random hash functions
Input:
L: number of hash functions
N : number of all qubits
k : size of the marginal

=Start collection by creating two circuits which prepare all qubits in |0〉 state and
in |1〉 state. Generate L random hash functions {f1, . . . , fL}, i.e., random map-
pings fl : [N ] → [k ]. Define k-qubit sub-register as a set of all bit-stringsn
X1, . . . ,X2

k
o
of length k . For each function fl , do: For each bitstring Xi in k-

qubit register, do: Define string Y of length N in the following way:

(Y)j =
(
Xi
)

fl (j)

Save Y as definition of one quantum circuit in the DDOT collection – each
symbol ’0’ corresponds to identity gate, each ’1’ symbol corre-
sponds to NOT gate. Check if generated set of s = 2 + L (2k − 2) bitstrings
{Y} contains all combinations of k-length subsets of symbols ’0’ and ’1’.If
yes: family {Y} defines perfect DDOT collection,If not: set L → L + 1, gen-
erate new random hash function, add it to the collection and perform steps 2, 3
and 4.

Algorithm 2 Generation of (N , k ) perfect collection of DDOT quantum circuits
using random circuits

Input:
s : number of circuits
N : number of all qubits
k : size of the marginal

=Start collection by creating two circuits which prepare all qubits in |0〉 state and
in |1〉 state. Generate s random bitstrings of size N . Each bitstring is a defini-
tion of quantum circuits – symbol ’0’ corresponds to identity gate, and symbol ’1’
symbol corresponds to NOT gate. Check if generated set of s bitstrings {Y} con-
tains all combinations of k-length subsets of symbols ’0’ and ’1’.If yes: family
{Y} defines perfect DDOT collection,If not: set s → s + 1, generate new random
bitstring, add it to the collection and check new collection.
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Algorithm 3 Assignment of qubits to clusters and neighborhoods
Input:
Spairs: set of all pair indices without repetitions of indices
δclust: threshold of correlations for assignment to clusters
δneighb: threshold of correlations for assignment to neighborhoodsn
T
Yj

Xi |Yi

o
i ,j
: collection of single-qubit noise matrices depending on state of single

neighbour for all pairs.

1.2.3.4.5.1.2.3. for (i , j ) in Spairs do
Calculate cj→i and ci→j as

cj→i =
1

2
| |T

Yj=
′
0
′

Q i
− TYj=

′
1
′

Q i
| |1→1 , ci→j =

1

2
| |TYi=

′
0
′

Q j
− TYi=

′
1
′

Q j
| |1→1 ,

whereYj denotes input state of qubit j (see Eq. (4.6)).

if cj→i > δclust or ci→j > δclust then
Assign qubits i and j to the same cluster.

else
if cj→i > δneighb then
Assign qubit j to the neighborhood of qubit i .

if ci→j > δneighb then
Assign qubit i to the neighborhood of qubit j .
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subsets). We will analyze this problem in more detail in future works, as well as
during the development of our GitHub repository [197].
To finish this subsection, we note that Algorithm 3, while being straightfor-

ward and efficient, is not a flawless method. For example, it might happen that
the noise on qubit i highly depends on the joint state of j and l , but this depen-
dence is much lower if one considers qubit j and qubit l separately. In that case,
Algorithm 3 might not assign the three qubits to the same cluster/neighborhood,
even though they are correlated. A way to overcome the above limitation is to
consider s generalizations of Algorithm 3 that makes use of three-qubit parame-
ters “cj l→i ”, hence requiring a k ≥ 3 DDOT procedure. This might be particularly
useful for refining dependencies between clusters which were reported by the
original Algorithm 3.

B.2.3 Constructing balanced DDOT collections

Interestingly, the tools utilized in the previous sections for the analysis of statis-
tical deviations can be used to estimate the probability that a given collection of
DDOT circuits will be approximately balanced. Recall that a perfect collection of
(N , k ) DDOT circuits is a collection of N-qubit quantum circuits consisting of É
and X gates with a property that for each k-qubit subset every k-qubit compu-
tational basis state is implemented at least once in the whole collection. If the
collection is balanced, it means that additionally each basis state is sampled the
same number of times.
Consider the randomized construction of such collection – take circuits which

are uniformly random combinations of 0 and 1 symbols (’0’ corresponding to
the identity gate and ’1’ to the NOT gate). This can be constructed efficiently
since it suffices to choose each of the N bits at random independently. Such
construction can be viewed as sampling from a 2N-dimensional uniform distri-
bution (corresponding to all possible N-bit strings describing possible circuits).
The k-bit marginal distributions obtained from this distribution correspond to the
distribution of local circuits on k-qubit subsets (i.e., the noise characterization
by implementing computational-basis states on k-qubit subsets). Having this
perspective, we can formulate the problem of approximate balancing of DDOT
family in the following way: What is the probability that, when sampling from
the global 2N-dimensional uniform distribution, all of the k-bit marginals (cor-
responding to the subsets of interest in DDOT) will be at most ǫ-distant from the
uniform distributions (on 2k-dimensional space)?
Nowwe can use tools of statistical analysis presented in the previous sections.

Our single marginal distribution has 2k outcomes, hence from Eq. (B.16) we get
that the probability of a singlemarginal being at least ǫ-distant in TVD is bounded
by

P1 ≤ 2
2
k

exp
(
−2sǫ2

)
, (B.38)

where s is here the number of random circuits in the collection (viewed as sam-
ples from the global uniform distribution of bitstrings). Since there is

(N
k

)
number
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of k-bit marginals, applying the union bound (as in the derivations in the previ-
ous sections) gives the upper bound for the probability PN ,k that at least one of
the

(N
k

)
marginals is at least ǫ-distant from uniform distributions as

PN ,k ≤
(
N

k

)
2
2
k

exp
(
−2sǫ2

)
. (B.39)

Hence with probability at least 1−
(N
k

)
2
2
k

exp
(
−2sǫ2

)
all marginals are at most

ǫ-distant from uniform distribution. Note that ǫ = 0 corresponds to a perfectly
balanced family of circuits, and small but non-zero ǫ will correspond to the ap-
proximately balanced family.
Let us now choose some parameter δ as an upper bound for probability

Eq. (B.39) and find the bound for the required number of random circuits s
(viewed as samples from a global uniform distribution) which are needed to ob-
tain a family for which each marginal is distant from the uniform distribution by
at most ǫ. After basic manipulations of Eq. (B.39) we obtain that

s ≥
2
k log 2 + log

(N
k

)
+ log

(
1

δ

)

2ǫ2
≈

2
k + k logN + log 1

δ

2ǫ2
. (B.40)

B.2.4 The efficiency of the random construction of DDOT collection

Random circuits

Adopting the perspective from the previous section, we can in a simple manner
tackle the problem of bounding the required number of random circuits which
are needed to obtain a perfect collection of

(N
k

)
DDOT circuits. Consider ran-

domly sampling s number of bit-string of length N . Now for a fixed k-element
subset, the probability of a particular k-element combination not appearing is

1 − 1

2k
. Hence after s samples, there is

(
1 − 1

2k

)s
probability that this particular

combination did not appear. Since there are 2k
(N
k

)
combinations of interest (i.e.,

2
k small k-length bitstrings for all

(N
k

)
subsets), we can use the union bound to

obtain

2
k

(
N

k

) (
1 − 1

2k

)s
≈ 2

k

(
N

k

)
exp

(
− s

2k

)
(B.41)

as the upper bound for the probability that at least one k-length bit-string did
not appear after s samples. This means that with probability of at least 1 −
2
k
(N
k

)
exp

(
− s
2k

)
, all of the k-length bitstrings appeared.

Let us now choose some parameter δ as the upper bound for Eq. (B.41) and
calculate the resulting bound for the number of samples (i.e., random circuits).
After basic manipulations we obtain

s > 2
k

(
k log 2 + log

(
N

k

)
+ log

1

δ

)
≈ 2

k

(
k log 2N + log

1

δ

)
. (B.42)
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Random hash functions

Using simple combinatorial arguments, in Ref. [151] it is shown that the proba-
bility of the collection of

(N
k

)
random hash functions not being perfect (for our

purposes perfect hash function collection means that it can be used to construct
a perfect DDOT collection) is upper bounded by

(
N

k

) (
1 − k !

k k

)L
, (B.43)

where L is the number of generated random hash functions. Then the authors
simplify the use of the above fact to derive a bound on the needed number of
hash functions for the collection to be perfect. Let us repeat the derivation from
Ref. [151] with paying attention to specific factors. From Algorithm 1 it follows
that the number of circuits s obtained from a given hash function collection is
equal to s = 2 +

(
2
k − 2

)
L. Now by choosing the parameter δ as upper bound

on Eq. (B.43), we obtain that required number of circuits is lower bounded by

s ≥ 2 +
(
2
k − 2

) − log
(N
k

)
+ log δ

log
(
1 −

√
2πk e−k

)

≥ 2 +
(
2
k − 2

) − log
(N
k

)
+ log δ

−
√
2πk e−k − 2πk e−2k

≥ 2 +
(
2
k − 2

) − log
(N
k

)
+ log δ

−
√
2π k e−k

≈ 2
k ek

(
1

k
log

1

δ
+ logN

)
,

where we used that log(1−x ) ≥ −x−x 2. Let us note that Eq. (B.44) is a reiterated
result from Ref. [151].

In above derivations we assumed that
(
− log

(N
k

)
+ log δ

)
< 0. , then we uti-

lized the fact that
√
2π k k+ 1

2e−k ≤ k ! ≤ e k k+ 1

2e−k , (B.44)

and we used approximation
(N
k

)
≈ N k .

B.2.5 Heuristic balancing of DDOT collection

After generating a perfect DDOT collection, one can be interested in making it
more balanced. There are various possible figures of merit that can be used
to quantify the “balancing” of the family. For example, in previous sections, we
used TVD between a uniform distribution and generated sample, when viewing
obtained circuits in the collection as samples from the uniform distribution. An-
other possibility is to calculate a number of appearances of each marginal term
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in the whole collection (for example, for 2-qubit subsets the number that each
of 00, 01, 10, and 11 appeared, for every 2-qubit subset), and then take an em-
pirical standard deviation σn,k of this quantity. A perfectly balanced family would
have 0 standard deviation defined in that way.
Nowwe discuss a simple heuristic method to improve balancing. The starting

point is a perfect (N , k ) DDOT collection. Now we apply the following steps in a
loop.

1. Calculate a number of appearances of all k-qubit terms in the collection.

2. Find the set of non-overlapping k-bit marginals which appear in the collec-
tion the least number of times compared to the whole population. If k does
not divide N , choose ⌊N

k
⌋ subsets and add random gates to the remaining

bits.

3. Add circuit which implements those least-appearing marginals to the col-
lection.

For example, say that in the last step of the above procedure for k = 2 and N = 5

we added circuit

01100 . (B.45)

This might mean that we found that the least appearing marginal is state 01 on
qubits Q0 and Q1, the marginal 10 on qubits Q2 and Q3 appeared the same or
second-least number of times in the whole collection, while the 0 on last qubit
Q4 was random. In this way, we are adding missing marginal terms “by hand” at
each step of the loop. Clearly, this procedure is heuristic and it is not guaranteed
to succeed since by adding certain circuits that implement desired marginals we
also implement other marginals (in the example above, we add, e.g., marginal 00
on qubits Q0 and Q3). If it happens that those other marginals are in the opposite
“tail” of the whole distribution (i.e., they are the most abundant ones), then the
collectionwill not becomemore balanced (it can actually become less balanced).
However, on average it is more likely that by doing so we add marginals that are
closer to the “average marginals” (i.e., those which appear a number of times
close to the mean appearance number).
Clearly, a lot of practical refinements of the described method are possible

– for example, in the second step of the method, instead of adding the least ap-
pearing marginals one can focus on maximizing the number of low-appearance
marginals. In practice, we found that the describedmethodwithout modifications
usually reduced σN ,k with a growing number of circuits added in the loop.
To conclude, let us note that the special case of the above technique can be

also used to add circuits to the non-perfect collection of DDOT circuits in order
to make it closer to being perfect. Namely, if the collection is not perfect, this
means that it does not implement some computational-basis states on some k-
qubit subsets. Hence in that case the above procedure would report “the least
appearing marginals” to be those which are missing in the collection and it would
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keep adding them in a loop until there are no missing terms – a strategy which
might turn out to better then adding random circuits if the number of missing
terms is not too big.

B.2.6 Overestimation of correlations

In themain text, we explained that when considering the implementation of DDOT
circuits, some two-qubit correlations might be overestimated due to the fact the
collection of circuits is not balanced. To understand this effect, let us now con-
sider the following illustrative (but rather unrealistic) example.

Explanation of the effect and post-processing strategy

Say that wewantmarginal probability distribution on qubitsQ0 andQ2when input
state was |00〉. Then if noise is uncorrelated it does not matter whether global
input state on three qubits was |000〉 or |010〉 (|001〉 or |011〉). However, when
there are correlations, it might happen that those two distributionswill be different
depending on the input state of Q1. When we marginalize over Q1 we forgot
about “where the data came from”. Normally, we would just add the marginal
probability from circuits implementing both global states and then normalized it.
But if global state |000〉 was implemented a different number of times than |010〉,
it can cause that effectively correlations which are caused by Q1 are wrongly
identified as correlations between Q0 and Q2, because some global probability
distributions contribute to the marginal with higher weights (i.e., are effectively
counted more times when calculating marginal distributions). As mentioned in
the main text, the natural way to reduce such effects is to create a collection that
is balanced, hence it samples from all two-qubit states the same number of times.
The other thing one can do is to perform post-processing of the experimental
data in such a way, that all contributions to the given marginal are weighted by
the inverse of a number of times they were implemented. Note that they come
from different global distributions, so what is important is the number of times the
given marginal state was implemented together with some specific state on all
the other qubits. Importantly, this method is not perfect because for big systems
the “state on all the other qubits” will likely be different each time anyway (this is
due to the fact that collection of DDOT circuits will be random, hence it becomes
quite unlikely to obtain two times the same bitstring if the number of qubits is
high). Another thing one can do is to change theweights of the given contribution
to the marginal distribution depending on the state of some particular subset of
qubits in order to assess whether inferred correlations were correct. Specifically,
one might perform a recursive procedure in which the structure of clusters and
neighborhoods inferred from non-post-processed data is validated on particular
subsets using this type of post-processing. There are certainly a lot of practical
possibilities to improve the post-processing scheme andwe intend to investigate
them in future research.
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Illustration of the effect

To have some idea how big a described effect can be, let us consider implemen-
tation of the following collection of circuits on three qubits {Q0,Q1,Q2}

{000, 001, 001, 010, 011, 100, 101, 110, 111} ,

where each 0 corresponds to implementation of identity gate and each 1 to the
NOT gate. Note that considered collection is clearly abundant for 3-qubit char-
acterization since it contains more than 23 = 8 circuits. One can think of the
above circuits as a part of a collection of DDOT circuits on a higher number of
qubits, while we only look at a specific triple of qubits. Now let us assume that
that the qubits Q0 and Q2 are completely uncorrelated in terms of readout noise.
On the other hand, Q1 and Q2 are highly correlated in a following way

Q1 = |0〉 =⇒ do nothing , (B.46)

Q1 = |1〉 =⇒ apply bitflip to Q2 . (B.47)

Now if one takes outcomes from circuits from the collection, add them up, nor-
malize and consider resulting estimators of probabilities of obtaining different
outcomes after implementation of collection from Eq. (B.46) marginalized over
qubit 1, it follows from direct computation that the noise matrix on Q0 and Q2 is
of the form

TQ0Q2 =

©�����
«

p (00|00) p (00|01) p (00|10) p (00|11)

p (01|00) p (01|01) p (01|10) p (01|11)

p (10|00) p (10|01) p (10|10) p (10|11)

p (11|00) p (11|01) p (11|10) p (11|11)

ª®®®®®
¬
=

©�����
«

1

2

1

3
0 0

1

2

2

3
0 0

0 0
1

2

1

2

0 0
1

3

1

2

ª®®®®®
¬
,

(B.48)

from which we obtain that the noise matrices on Q0 depending on state of Q2

are

TY2=
′
0
′
=

 
p (00|00) + p (01|00) p (00|10) + p (01|10)

p (10|00) + p (11|00) p (10|10) + p (11|10)

!
=

 
1 0

0 1

!
(B.49)

TY2=
′
1
′
=

 
p (00|01) + p (01|01) p (00|11) + p (01|11)

p (10|01) + p (11|01) p (10|11) + p (11|11)

!
=

 
1 0

0 1

!
(B.50)

(B.51)

and on Q2 depending on state of Q0

TY0=
′
0
′
=

 
p (00|00) + p (10|00) p (00|01) + p (10|01)

p (01|00) + p (11|00) p (01|01) + p (11|01)

!
=

 
1

2

1

2

1

2

1

2

!
(B.52)

TY0=
′
1
′
=

 
p (00|10) + p (10|10) p (00|11) + p (10|11)

p (01|10) + p (11|10) p (01|11) + p (11|11)

!
=

 
1

3

1

2

2

3

1

2

!
. (B.53)
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The above matrices give correlation factors (Eq. (4.6)

c2→0 = 0 (B.54)

c0→2 =
1

6
. (B.55)

Hence the Algorithm 3 would report that the noise on Q2 significantly depends
on the state of Q0 even though physically there is no dependence. The correla-
tions between Q1 and Q2 give rise to false correlations between Q0 and Q2 after
marginalizing over Q1. This is solely due to the fact that in Eq. (B.46) different
three-qubit states are sampled different numbers of times, which gives some
contributions to the marginals have higher weight when constructing effective
noise matrix on Q0 and Q2.

B.3 Noise characterization scheme overview

Here we provide a step-by-step description of our noise characterization pro-
cedure. We note that stages 0 and 1 were only briefly mentioned in the main text,
and they correspond to the verification of the undertaken assumptions: stage 0
verifies the quality of the single-qubit gates, and stage 1 the assumption about
classical nature of the noise in the measurement device. Stages 2 and 3 de-
scribe the proper characterization scheme of Diagonal Detector Overlapping To-
mography which was discussed in detail in the main part of the work and in
Appendix B.2.

B.3.1 Stage 0 – single-qubit gate fidelities

To begin, let us note that of our characterization procedure relies on the assump-
tion of perfect state preparation. However, in practice, this assumption might be
significantly violated. Therefore we propose not to use qubits with single-qubit
gate infidelities above some threshold – in our experiments we arbitrarily chose
this threshold to be 0.01.
In experiments on IBM’s Melbourne backend, the single-qubit gate fidelities

were good enough (fidelities above 99%) to use all of the qubits. In the case of
Rigetti’s Aspen-8, we discarded 8 qubits which had fidelities below 98%, while
still using qubits 5 qubits which had fidelity in range [98%, 99%].

B.3.2 Stage 1 – assessing classical form of the noise

In order to perform simultaneous estimation of single-qubit detectors with an
overcomplete operator basis, one needs to implement 6 different circuits – each
implementing eigenstate of a different Pauli matrix on every qubit at the same
time. After this implementation, one needs to post-process data to obtainmarginal
single-qubit distributions and use standard detector tomography algorithms, for
example, those described in [159] (and implemented in Python in online repos-
itory [197]).
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Having reconstructed POVMs describing each single-qubit detector in a de-
vice, one can assess the classicality of the noise using methods described in
Ref. [42] – for the sake of completeness, we will recall the main notions of that
procedure here. First, we will need a notion of distance between quantum mea-
surements. Such distances are usually related to the probability distributions that
those measurements generate via Born’s rule. Recall from Eq. (4.7) that the To-
tal Variation Distance between probability distributions p and q as L1 norm of
difference of those vectors

DTV (p, q) =
1

2
| |p − q| |1 =

1

2

Õ
i

|pi − qi | . (B.56)

Now, the distance between quantum measurements related to TVD is the oper-
ational distance Dop defined for two POVMs M and P as [118]

Dop (M,P) = maxDTV (pM, qP) , (B.57)

where pM (or qP) is a probability distribution generated by measurementM (or P)
via Born’s rule, and the maximization goes over all quantum states. Hence, the
operational distance between two quantum measurements is the worst-case
distance between probability distributions they can generate. Now, to quantify
readout noise one can simply calculate2 operational distance for reconstructed
POVMM for each qubit and the ideal measurement P. Then, to quantify coherent
part of the noise, one can make the following decomposition [42]

M = TP|{z}
classical part

+ ∆|{z}
coherent part

. (B.58)

For the ideal measurement P being the standard measurement in the compu-
tational basis, this decomposition is straightforward – the classical part of the
noise is contained in the diagonal part of the measurement operators, while off-
diagonal terms are a coherent part. The magnitude of the coherent part of the
noise can be quantified as Dop (M, TP). The assumption of fully classical noise
leads to discarding the coherent part ∆ in the Eq. (B.58) and performing error-
mitigation as if POVM TP was exact description of the detector. This leads to
the propagation of coherent errors under error-mitigation, and it can be quanti-
fied via | |T−1 | |1→1Dop (M, TP). Following guidelines in Ref. [42], we propose to
discard every qubit which fulfills the following inequality

| |T−1 | |1→1Dop (M, TP) ≥ Dop (M,P) . (B.59)

Fortunately, in experiments on both IBM’s and Rigetti’s machines, this step did
not lead us to discard any qubits – the noise in those devices remains highly
classical, as indicated in previous experiments [42; 41].
Before proceeding further, let us note that while assessing classicality of the

noise via single-qubit QDTs we make the following implicit assumption – the

2See Refs. [118; 42] on practical calculation of RHS of Eq. (B.57).
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coherent part of the noise does not scale significantly with growing system size
(by this we mean that it is at most additive in the number of qubits). Furthermore,
in using the rule Eq. (B.59) we disregard effects of statistical deviations.

B.3.3 Stage 2 – Diagonal Detector Overlapping Tomography

The main idea of DDOT was described in the main text. The practical gener-
ation of relevant circuits was described in Appendix B.2.1 and summarized in
Algorithm 1 (using random hash functions) and in Algorithm 2 (using random
circuits).

B.3.4 Stage 3 – inferring correlations structure

The procedure of inferring correlations (i.e., structure of clusters and neighbour-
hoods) was described in detail in Appendix B.2.2 and summarized in Algorithm 3.

B.4 Sample complexity of energy estimation

In this section, we give some derivations related to the estimation of expectation
values of local Hamiltonian terms on various quantum states. We start by dis-
cussing correlations in random states in Appendix B.4.1. Then in Appendix B.4.2,
we prove Proposition 2 from the main text, which concerns states appearing
in the QAOA algorithms. Finally, in Appendix B.4.3 we analyze what happens
with the covariances of local Hamiltonian terms if the uncorrelated measurement
noise and its mitigation are present.

B.4.1 Local correlations in random states

Proposition 4. Let |ψ〉 be a pure state on (Ã2)⊗N , for a subset γ ⊂ [N ] of qubits
we denote by ργ and idγ the marginal of |ψ〉〈ψ | corresponding to γ and the
maximally mixed state on γ, respectively. Let Hα ,Hβ be local hamiltonians term
that act on disjoint substets of qubits. We then have

Cov(HA,HB ) ≤ 3‖HA‖‖HB ‖‖ρα∪β − idα∪β ‖1. (B.60)

Proof. A simple algebra gives

Cov(Hα ,Hβ ) = tr
(
Hα ⊗ Hβ (ρα∪β − ρα ⊗ ρβ )

)

= tr
(
Hα ⊗ Hβ (∆α∪β − ∆α ⊗ ρβ + idα ⊗ ∆β )

)
, (B.61)

where ∆γ = ργ − idγ . We now apply the well-known inequality
tr(X ) ≤ ‖A‖‖X ‖1 , (B.62)

for A = Hα ⊗ Hβ and X = ∆α∪β −∆α ⊗ ρβ − idα ⊗ ∆β . The 1-norm can be upper
bounded as follows:

‖∆α∪β − ∆α ⊗ ρβ + idα ⊗ ∆β ‖1 ≤ ‖∆α∪β ‖1 + ‖∆α ‖1 + ‖∆β ‖1 ≤ 3‖∆α∪β ‖1 ,
(B.63)
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where we used the following properties of 1-norm: triangle inequality, multi-
plicativity: ‖A⊗B ‖1 = ‖A‖1‖B ‖1, and data-processing inequality [198]. We con-
clude the proof by inserting (B.63) into (B.62) and using ‖Hα ⊗Hβ ‖ = ‖Hα ‖‖Hβ ‖.

�

B.4.2 Proof of Proposition 2

Consider Hamiltonian with connectivity given by Erdös-Rényi random graphwith
N nodes and K edges with average degree equal to q =

K
N
. We will show that

if the number of levels satisfies p = c log(N ) + 1 with c ≤ 1

2 log(2q/ln 2) , then the

variance of the energy Var (H) will scale as O(N 2−x ), with x > 0 depending on
c.
Let G = (V , E ) be a graph (with vertex set V and edge set E ), we denote

by B (i , r ) the set of vertices that are in graph distance r or less from vertex i .
Similarly, for an edge α = (i , j ) ∈ E , we define C (α , r ) the set of vertices that
are in graph distance r or less away from α . For α = (i , j ) and β = (v ,w ), we
have that if v < B (i , r + 2), then β < C (α , r ).
The random Hamiltonian corresponding to a graph can be written as sum of

2-qubit terms (with also single qubit terms incorporated into these) correspond-
ing to the edges E of the random graph G (N , q ), i.e., H =

Í
(i ,j )∈E H (i ,j ) . The

variance is then

Var (H) =
Õ

α ,β∈E
Cov

(
Hα ,Hβ

)
. (B.64)

To bound this quantity we will utilize the following two facts. First, we notice
that than any non-zero term in Eq. (B.64) can be bounded by

Cov
(
Hα ,Hβ

)
≤ Var (Hα ) Var

(
Hβ

)
≤ | |Hα | | | |Hβ | |, (B.65)

where we used known covariance-variance inequality together with Popoviciu’s
inequality.
Second, we reiterate an important observation from Ref. [171] about these

types of QAOAs: Consider two operators O1 and O2 acting non-trivially only on
the sets of qubits A1 ⊂ V and A2 ⊂ V , respectively. IfU is a unitary correspond-
ing to a p-level QAOA (with any parameter setting), the set of nodes A1 and A2

is in graph distance at least 2p distance from each other and |ψ〉 is product state,
then

〈ψ |U †O1O2U |ψ〉 = 〈ψ |U †O1U |ψ〉 〈ψ |U †O2U |ψ〉 . (B.66)

With these two ingredients, we can bound the variance as

Var (H) =
Õ

α ,β∈E
Cov

(
Hα ,Hβ

)

=

Õ
α∈E

Õ
β∈C (α ,2p)

Cov
(
Hα ,Hβ

)

≤
Õ
α∈E

Õ
β∈C (α ,2p)

| |Hα | | | |Hβ | | . (B.67)
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An even more rough upper bound can be given by

Var (H) ≤ fH

Õ
α∈E
max
α∈E

|C(α , 2p) | = fH K max
α∈E

|C(α , 2p) | , (B.68)

with setting

fH = max
α ,β

| |Hα | | | |Hβ | | (B.69)

Nowwe can turn to the concrete case of Hamiltonians corresponding to graph
sampled from the Erdös-Rényi graphs with average degree q . For such graphs
the Neighborhood Size Theorem states the following [171]:
For any

r <
w log(N )

4 log(2q/ln(2)
, (B.70)

where 0 < w > 1 , there exists a constants a > 0 and A < 1 such that

Prob
h
max
i ∈V

|B(i , r ) | ≥ N A/2
i
≤ e−N

a/2

. (B.71)

To be more specific, we can give the expression of a and A in terms of r and N :

A = w
(2 + | log2q (ln(2)) |)

(1 + | log2q (ln(2)) |)
, (B.72)

a =
w

3(1 + | log2q (ln(2)) |
. (B.73)

The proof of the above comes from the proof of Neighborhood Size Theorem
given in [171], page 13. Specifically our inequalities correspond to setting s = 1.
Now note that since for any α = (i , j ) ∈ E and β = (v ,w ) ∈ E , we have that

if β ∈ C(α , r ) then v ∈ B(i , r + 2). This immediately implies that generally for
α = (i , j ) ∈ E we have |C(α , r ) | ≤ |B(i , r + 2) |2, and thus also

Prob
h
max
α∈E

|C(α , r−2) | ≥ N A
i
≤ Prob

h
max
α∈E

|B(α , r ) |2 ≥ N A
i
= Prob

h
max
α∈E

|B(α , r ) | ≥ N A/2
i
≤

(B.74)
If we now choose 2p = r − 2, and thus

p <
w log(N )

8 log(2q/ln(2))
− 1, (B.75)

then by combining Eq. (B.74) with bound in Eq. (B.68), we get that with proba-
bility at least 1 − e−N

a/2
variance of the Hamiltonian is bounded by

Var (H) ≤ fH K max
α∈E

|C(α , r ) | ≤ fH K N A
= fH q N A+1 (B.76)

which is statement of Proposition 2.
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B.4.3 Covariances of local terms in presence of uncorrelated readout noise

Presence of uncorrelated readout noise

As a starting point, let us assume that we have a state with correlations bounded
in trace norm

| |ραβ − ρα ⊗ ρβ | |1 ≤ ǫαβ , (B.77)

where ραβ is marginal quantum state on subsystems α and β which is close to a
product state of those subsystems. The special instance ǫ = 0 corresponds to
the product state case. We are interested in what happens with the covariances
of local Hamiltonian terms if the measurement is affected by uncorrelated clas-
sical noise of the form T =

Ë
i TQ i
, where TQ i

is noise matrix acting on qubit Q i

(see Eq. (4.15)). Similarly, as in the main text, the Hamiltonian we consider is
classical (i.e., diagonal), and local terms can be decomposed into sums of prod-
ucts of Pauli σz terms. Let us denote by p

noisy
α = Tαp

ideal
α a noisy marginal distri-

bution on the qubit subset α corresponding to local Hamiltonian term Hα . Note
that in the uncorrelated noise model Tα =

Ë
Q i ∈α TQ i

. Similarly to Eq. (B.20), we
can write the expectation value of the noisy local Hamiltonian term as

〈
H̃α

〉
ρα
B 〈Tα |pnoisyα 〉 = 〈Tα |Tαpidealα 〉 , (B.78)

where Tα is a vectorized spectrum of term Hα , the subscript ρα indicates the
marginal state on which the expectation value is calculated and we used a con-
venient braket notation to denote scalar product.

We are now interested in bounding the covariance Cov
(
H
noisy
α ,H

noisy
β

)
be-

tween two local Hamiltonian terms when measured in a quantum state from
Eq. (B.77). Let us decompose a marginal quantum state as

ραβ = ρα ⊗ ρβ + ∆αβ

∆αβ B ραβ − ρα ⊗ ρβ .

Now can write

Cov
(
H̃α , H̃β

)
=
〈
H̃αβ

〉
ραβ

−
〈
H̃α

〉
ρα

〈
H̃β

〉
ρβ

=

=
〈
H̃αβ

〉
∆αβ

+
〈
H̃αβ

〉
ρα⊗ρβ −

〈
H̃α

〉
ρα

〈
H̃β

〉
ρβ

=

= 〈Tαβ |Tαβpideal∆αβ
〉|              {z              }

correlated part

+ 〈Tαβ |Tα⊗βpidealαβ 〉 − 〈Tα |Tαpidealα 〉〈Tβ |Tαpidealβ 〉|                                                         {z                                                         }
uncorrelated part

.

In the above we slightly abused the notation – in general, α and β can over-
lap, in which case one needs to insert proper identities and accordingly redefine
product state ρα ⊗ ρβ (together with bound in Eq. (B.77) which will now corre-
spond to the different, more refined division of qubits) and corresponding noise
matrices. We also denoted by pideal

∆αβ
a formal vector given by diagonal elements
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of ∆αβ (this corresponds to measurement in computational basis). Now note
that in the last line of Eq. (B.79) the part underlined as “uncorrelated part” con-
tains terms without any correlations except those which can appear if α and β
overlap. In particular, if α ∩ β = ∅, then since the noise is uncorrelated, we

have
〈
Tαβ

�� = 〈Tα | ⊗
〈
Tβ

�� and Tα⊗βpidealα⊗β =
(
Tαp
ideal
α

)
⊗
(
Tβp
ideal
β

)
, therefore then

this part is equal 0. Otherwise, it gives a non-zero contribution, which however
would be present even without any measurement noise.
The only part which adds non-trivial correlations is therefore 〈Tαβ |Tαβpideal∆αβ

〉
which using Eq. (B.77) and elementary transformations can be bounded as

|〈Tαβ |Tαβpideal∆αβ
〉 | ≤ | |HαHβ | | | |Tαβ | |1→1 | |∆αβ | |1 ≤ | |HαHβ | | ǫαβ . (B.79)

In the last inequality wemade use of the following facts. If α and β do not overlap,
we have | |Tαβ | |1→1 = | |Tα ⊗ Tβ | |1→1 = | |Tα | |1→1 | |Tβ | |1→1 = 1. In case α and
β overlap, the non-overlapping parts will simply give stochastic matrices (and
they have 1 → 1 norm equal to 1), while overlapping parts will be squared. We
therefore obtain | |Tαβ | |1→1 =

Î
i ∈α∩β | |T

2

i
| |1→1 ≤ Î

i ∈α∩β | |Ti | |
2

1→1
= 1, where

we used submultiplicity of norm. Of course, if the noise model is known, the
| |Tαβ | |1→1 could be also calculated explicitly.
From the above, it follows that if ǫαβ is small, then under uncorrelated mea-

surement noise the covariances between local termswill be, unsurprisingly, small
as well.

Effects of error-mitigation

To include error-mitigation on the above considerations let us note that since
error-mitigation is operation performed classically, it can be incorported into the

spectrum of the Hamiltonian by defining spectrum
D
TαA

†
α

��� of “error-mitigated
Hamiltonian” term H corrα which energy is estimated on the noisy probability dis-
tribution

��pnoisy
〉
. Here we define a dual of correction matrix A†α acting on the

spectrum of the local Hamiltonian. Note that if the correction matrix is exact (i.e.,
not approximate), it immediately follows that expected value of such defined
Hamiltonian coincides with the true value of the energy

〈
H corrα

〉
= 〈TαA†α |pnoisy〉 = 〈TαA†α |Tαpideal〉 = 〈Tα | AαTα|{z}

É

pideal〉 = 〈Tα |pideal〉 = 〈Hα 〉 .

(B.80)

Using this perspective we can derive the bounds on covariances between error-
mitigated local Hamiltonian terms in a manner fully analogous to previous deriva-
tions. The “correlated part” this time is bounded as

|〈TαβA†αβ |Tαβp
ideal
Δ 〉 | ≤ | |HαHβ | | | |A

†
αβ

| |1→1 | |Tαβ | |1→1 | |∆αβ | |1 ≤ | |HαHβ | | | |A
†
αβ

| |1→1 ǫαβ .

(B.81)
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parameter α γ A a c
starting value 0.602 0.101 200 0.06 0.12

Table B.1: Starting values of hyperparameters used in optimization. The meaning of
the parameters is in agreement with standard conventions (see for example Refs. [177;
178]).

The rest of discussion is identical to the previous analysis of the effects of un-
correlated noise, the difference being that now we have additional terms coming
from the duals of correction matrices. Note that those duals in special cases can
have huge values – indeed, if the noise matrix is barely invertible in the first place,
one can expect that error-mitigation will highly increase the uncertainty in the
estimation of energy.

B.5 Details of numerical simulations and additional experimental data

In this short section, we provide some additional information on numerical sim-
ulations and experiments. This includes detailed discussion of methods used to
simulate QAOA in Appendix B.5.1, and additional experimental results on char-
acterization of correlations in Appendix B.5.2.

B.5.1 Simulation of the Quantum Approximate Optimization Algorithm

Here we provide some details of the performed numerical simulations. Simula-
tion of QAOA was performed on the system of N = 8 qubits. In the main text,
we described how the algorithm works, however, let us now repeat it for the
sake of completeness. In standard implementation [144], one initializes quan-
tum system to be in |+〉⊗N state, where |+〉 = 1√

2
( |0〉 + |1〉). Then p-layer QAOA

is performed via implementation of unitaries of the form

Up = Π
p

j
exp

(
−i αjHD

)
exp

(
−i βjHO

)
, (B.82)

whereHD is driver Hamiltonian, which we take to be

HD =

NÕ
k

σk
x , (B.83)

and HO is objective Hamiltonian that one wishes to optimize (i.e., to find ap-
proximation for its ground state energy), and

{
αj

}
,

{
βj
}
are the angles to-be-

optimized. The quantum state after p-th layer is
��ψp

〉
= Up |+〉⊗N , (B.84)

and the function which is passed to classical optimizer is the estimator of the
expected value

〈
ψp

��HO

��ψp

〉
(note that this makes those estimators to effectively



B.5. Details of numerical simulations and additional experimental data 163

be a function of parameters
{
αj

}
,

{
βj
}
). The estimator is obtained by sampling

from the distribution defined by the measurement of
��ψp

〉
in the computational

basis, taking the relevant marginals, and calculating the expected value of HO

using values of those estimated marginals.
Theoretically one could optimize p-layer QAOA by simultaneous optimiza-

tion of all 2p angles. However, this is hard in practice, since the number of op-
timized parameters increases the complexity of classical optimization. In our
optimizations, we therefore modified the optimization to be divided into steps in
the following way. In each step of optimization, we optimized over the set of 6
angles (i.e., 3 QAOA layers). Then the input to the next step was the optimized
state obtained in the previous steps. For example, input to second optimization
step was the quantum state U (1)

3
|+〉⊗N = U3 |+〉⊗N , where we used superscript

to denote optimization step. Then input to third optimization step was the state
U

(2)

3
U

(1)

3
|+〉⊗N = U6 |+〉⊗N , etc.

In summary, for p-layer QAOA, the optimization was effectively divided into
p

3
steps, and in each step, we optimized over 6 angles, i.e., 3 QAOA layers. Each
step used 2∗800 = 1600 function evaluations (the factor 2 comes from two eval-
uations needed for gradient evaluation which was done 800 times) plus a single
final function evaluation. We further performed each such procedure additional
time and chose the better run (out of 2). Each energy estimator was obtained
using 104 energy measurements. Therefore the total number of function evalua-
tions was ≈ p

3
× 3.2 × 10

7.
As a classical optimizer, we used Simultaneous perturbation stochastic ap-

proximation (SPSA) [177; 178; 156; 61]. Then with a growing number of opti-
mization steps, we gradually changed the parameters to (heuristically) make the
optimization more adaptive. Parameters α and γ were not changed, while other
parameters were changed according to prescription

ap = a0 0.9
p
,

cp = c0 0.9
p
,

Ap = A0 1.1
p
,

where 0 subscript denotes starting values of parameters given in Table B.1.
We note that the results presented in Fig. 4.6 exhibit rather poor convergence

of the algorithm in a sense that adding more layers above p = 9 changed the re-
sulting energies only slightly. This can be explained by the fact that we did not
perform an exhaustive search over hyperparameters, but can also be a manifes-
tation of the recently reported fact that QAOAmight have problems with reaching
global minima for relatively complicated Hamiltonians (like high-density MAX-
2-SAT used in our work) [199]. Clearly, in the context of our work, only the
comparison of noisy and noise-mitigated optimization to the noiseless run was
of significance.



B.5. Details of numerical simulations and additional experimental data 164

Figure B.1: Depiction of correlations in Rigetti device. In Fig. 4.2 we presented the above
image splited into two parts for clarity.

Figure B.2: Heatmap of the correlations (Eq. (4.6)) in IBM’s 15-qubit Melbourne device
(left) and a 23-qubit subset of Rigetti’s Aspen-8 device (right). The convention is that
“row is affected by column”, i.e., the measurement noise on the qubit with the label given
by row index depends on the state of the qubit with the label given by column index, and
the magnitude of the dependence is indicated by colors.

B.5.2 Additional experimental data

Here we present additional data concerning correlations reconstructed in DDOT
characterization of IBM’s 15-qubit Melbourne device and a 23-qubit subset of
Rigetti’s Aspen-8 device. The full depiction of correlations in Rigetti’s device is
presented in Fig. B.1. The heatmaps showing the reported correlations in both
devices are presented in Fig. B.2. In Fig. B.3 we show how many parameters
are needed to describe various noise models, and table in Fig. B.4 shows how
much time data-processing took. The data was processed using laptop with
32GB DDR4 RAM (speed 2667MT/s) and Intel(R) Core(TM) i7-9750H CPU @
2.60GHz. We note that no multi-threading was implemented – in principle, one
likely can reduce the run-time further be exploiting parallel calculations. We
intend to optimize the code used for data-processing during development of
our online repository [197].
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Figure B.3: Total number of parameters needed to describe a noisemodel. The uncorre-
lated noise model is tensor product of single-qubit stochastic noise matrices. The "only
neighbors" model corresponds to considering only single-qubit (trivial) clusters and
their neighborhoods estimated in our experiments. The "clusters & neighbors" model
corresponds to our full noise model containing both non-trivial clusters and their neigh-
borhoods. CTMP is a number of parameters needed to describe 2-local classical noise
model from Ref. [120] without any assumptions on the correlations structure. We note
that combining our DDOT characterization with CTMP model could reduce the number
of parameters in CTMP by pointing to negligible correlations that can be disregarded.
For comparison, the "full classical" noise model refers to generic stochastic map, and
"full quantum" to a generic d-outcome POVM.

Figure B.4: Time of data processing. In first table, the "pre-processing time" includes
calculation of marginal noise matrices on 2-qubit subsets, calculation of pairwise cor-
relations, reconstruction of the noise model and calculation of inverse noise matri-
ces needed for corrections of all possible two-qubit marginal probability distributions
(note that this in general includes also higher-dimensional corrections, as explained in
Fig. 4.3). In the second table, the "Total post-processing time" includes both calculation
of marginal distributions needed to estimate energies of investigated 2-local Hamilto-
nians and performed error-mitigation on them. The "Error-mitigation time" shows only
the latter.


